Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(19):7371–7374. doi: 10.1073/pnas.85.19.7371

Immunoglobulins from amyotrophic lateral sclerosis patients enhance spontaneous transmitter release from motor-nerve terminals.

O D Uchitel 1, S H Appel 1, F Crawford 1, L Sczcupak 1
PMCID: PMC282188  PMID: 2902629

Abstract

Amyotrophic lateral sclerosis (ALS) is an incapacitating neuromuscular disease of unknown etiology. Although laboratory evidence is lacking, circumstantial evidence supports the importance of immune factors in the pathogenesis of ALS. In the present study immunoglobulins from 4 of 8 ALS patients induced a significant increase in spontaneous quantal transmitter release as monitored by miniature end-plate potential (MEPP) frequency in mouse phrenic nerve-diaphragm preparations at 23 degrees C, whereas immunoglobulins from normal individuals and from patients with other neuromuscular diseases had no effect. At 32 degrees C neither normal nor disease control immunoglobulins influenced MEPP frequency, but 8 of 11 ALS immunoglobulin samples produced a significant increase in spontaneous quantal transmitter release. The enhancing effect could be prevented by 10 mM Mg2+. No effects were noted on MEPP amplitude and muscle resting potential. These findings suggest that the presynaptic terminal of the motor neuron may be an early target and that immunological factors may play an important role in the disease process.

Full text

PDF
7371

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alnaes E., Rahamimoff R. On the role of mitochondria in transmitter release from motor nerve terminals. J Physiol. 1975 Jun;248(2):285–306. doi: 10.1113/jphysiol.1975.sp010974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Appel S. H. A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Ann Neurol. 1981 Dec;10(6):499–505. doi: 10.1002/ana.410100602. [DOI] [PubMed] [Google Scholar]
  3. Appel S. H., Stockton-Appel V., Stewart S. S., Kerman R. H. Amyotrophic lateral sclerosis. Associated clinical disorders and immunological evaluations. Arch Neurol. 1986 Mar;43(3):234–238. doi: 10.1001/archneur.1986.00520030026007. [DOI] [PubMed] [Google Scholar]
  4. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  5. Balnave R. J., Gage P. W. The inhibitory effect of manganese on transmitter release at the neuromuscular junction of the toad. Br J Pharmacol. 1973 Feb;47(2):339–352. doi: 10.1111/j.1476-5381.1973.tb08332.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bradley W. G., Good P., Rasool C. G., Adelman L. S. Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis. Ann Neurol. 1983 Sep;14(3):267–277. doi: 10.1002/ana.410140304. [DOI] [PubMed] [Google Scholar]
  7. Bradley W. G., Krasin F. A new hypothesis of the etiology of amyotrophic lateral sclerosis. The DNA hypothesis. Arch Neurol. 1982 Nov;39(11):677–680. doi: 10.1001/archneur.1982.00510230003001. [DOI] [PubMed] [Google Scholar]
  8. Brahic M., Smith R. A., Gibbs C. J., Jr, Garruto R. M., Tourtellotte W. W., Cash E. Detection of picornavirus sequences in nervous tissue of amyotrophic lateral sclerosis and control patients. Ann Neurol. 1985 Sep;18(3):337–343. doi: 10.1002/ana.410180311. [DOI] [PubMed] [Google Scholar]
  9. DEL CASTILLO J., ENGBAEK L. The nature of the neuromuscular block produced by magnesium. J Physiol. 1954 May 28;124(2):370–384. doi: 10.1113/jphysiol.1954.sp005114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Doherty P., Dickson J. G., Flanigan T. P., Kennedy P. G., Walsh F. S. Effects of amyotrophic lateral sclerosis serum on cultured chick spinal neurons. Neurology. 1986 Oct;36(10):1330–1334. doi: 10.1212/wnl.36.10.1330. [DOI] [PubMed] [Google Scholar]
  12. Duncan C. J., Statham H. E. Interacting effects of temperature and extracellular calcium on the spontaneous release of transmitter at the frog neuromuscular junction. J Physiol. 1977 Jun;268(2):319–333. doi: 10.1113/jphysiol.1977.sp011859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Elmqvist D., Feldman D. S. Calcium dependence of spontaneous acetylcholine release at mammalian motor nerve terminals. J Physiol. 1965 Dec;181(3):487–497. doi: 10.1113/jphysiol.1965.sp007777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gibbs C. J., Jr, Gajdusek D. C. An update on long-term in vivo and in vitro studies designed to identify a virus as the cause of amyotrophic lateral sclerosis, parkinsonism dementia, and Parkinson's disease. Adv Neurol. 1982;36:343–353. [PubMed] [Google Scholar]
  15. Gurney M. E., Belton A. C., Cashman N., Antel J. P. Inhibition of terminal axonal sprouting by serum from patients with amyotrophic lateral sclerosis. N Engl J Med. 1984 Oct 11;311(15):933–939. doi: 10.1056/NEJM198410113111501. [DOI] [PubMed] [Google Scholar]
  16. Gurney M. E., Heinrich S. P., Lee M. R., Yin H. S. Molecular cloning and expression of neuroleukin, a neurotrophic factor for spinal and sensory neurons. Science. 1986 Oct 31;234(4776):566–574. doi: 10.1126/science.3764429. [DOI] [PubMed] [Google Scholar]
  17. HOREJSI J., SMETANA R. The isolation of gamma globulin from blood-serum by rivanol. Acta Med Scand. 1956 Jun 30;155(1):65–70. doi: 10.1111/j.0954-6820.1956.tb14351.x. [DOI] [PubMed] [Google Scholar]
  18. Ingvar-Maeder M., Regli F., Steck A. J. Search for antibodies to skeletal muscle proteins in amyotrophic lateral sclerosis. Acta Neurol Scand. 1986 Sep;74(3):218–223. doi: 10.1111/j.1600-0404.1986.tb07858.x. [DOI] [PubMed] [Google Scholar]
  19. Katz B., Miledi R. The role of calcium in neuromuscular facilitation. J Physiol. 1968 Mar;195(2):481–492. doi: 10.1113/jphysiol.1968.sp008469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kita H., Van der Kloot W. Action of Co and Ni at the frog neuromuscular junction. Nat New Biol. 1973 Sep 12;245(141):52–53. doi: 10.1038/newbio245052a0. [DOI] [PubMed] [Google Scholar]
  21. Kriebel M. E., Llados F., Matteson D. R. Histograms of the unitary evoked potential of the mouse diaphragm show multiple peaks. J Physiol. 1982 Jan;322:211–222. doi: 10.1113/jphysiol.1982.sp014033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Publicover S. J., Duncan C. J. The action of verapamil on the rate of spontaneous release of transmitter at the frog neuromuscular junction. Eur J Pharmacol. 1979 Feb 15;54(1-2):119–127. doi: 10.1016/0014-2999(79)90414-x. [DOI] [PubMed] [Google Scholar]
  23. Schanne F. A., Kane A. B., Young E. E., Farber J. L. Calcium dependence of toxic cell death: a final common pathway. Science. 1979 Nov 9;206(4419):700–702. doi: 10.1126/science.386513. [DOI] [PubMed] [Google Scholar]
  24. Shy M. E., Rowland L. P., Smith T., Trojaborg W., Latov N., Sherman W., Pesce M. A., Lovelace R. E., Osserman E. F. Motor neuron disease and plasma cell dyscrasia. Neurology. 1986 Nov;36(11):1429–1436. doi: 10.1212/wnl.36.11.1429. [DOI] [PubMed] [Google Scholar]
  25. Spencer P. S., Nunn P. B., Hugon J., Ludolph A. C., Ross S. M., Roy D. N., Robertson R. C. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin. Science. 1987 Jul 31;237(4814):517–522. doi: 10.1126/science.3603037. [DOI] [PubMed] [Google Scholar]
  26. Statham H. E., Duncan C. J. The action of ionophores at the frog neuromuscular junction. Life Sci. 1975 Nov 1;17(9):1401–1406. doi: 10.1016/0024-3205(75)90159-9. [DOI] [PubMed] [Google Scholar]
  27. Thesleff S. Different kinds of acetylcholine release from the motor nerve. Int Rev Neurobiol. 1986;28:59–88. doi: 10.1016/s0074-7742(08)60106-3. [DOI] [PubMed] [Google Scholar]
  28. Touzeau G., Kato A. C. Effects of amyotrophic lateral sclerosis sera on cultured cholinergic neurons. Neurology. 1983 Mar;33(3):317–322. doi: 10.1212/wnl.33.3.317. [DOI] [PubMed] [Google Scholar]
  29. Viola M. V., Lazarus M., Antel J., Roos R. Nucleic acid probes in the study of amyotrophic lateral sclerosis. Adv Neurol. 1982;36:317–329. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES