Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(19):7389–7393. doi: 10.1073/pnas.85.19.7389

Characterization of dihydropyridine-sensitive calcium channels in rat brain synaptosomes.

J J Woodward 1, M E Cook 1, S W Leslie 1
PMCID: PMC282192  PMID: 2459704

Abstract

We examined the effects of dihydropyridine Ca2+-channel agonists on synaptosomal voltage-dependent Ca2+ entry and endogenous dopamine release. The (-) isomer of Bay K 8644 and the (+) isomer of Sandoz compound 202-791 were 100-1000 times more potent than their respective opposite enantiomers in enhancing Ca2+ uptake and dopamine release from striatal synaptosomes. The active isomer of each of these compounds increased Ca2+ entry and dopamine release to the same extent at a concentration of 1 nM. Fast-phase Ca2+ entry into synaptosomes isolated from cerebellum, cortex, and hippocampus was sensitive to nanomolar concentrations of Bay K 8644. No effect of Bay K 8644 was observed in synaptosomes isolated from brainstem. Bay K 8644 increased synaptosomal Ca2+ uptake and endogenous dopamine release from striatal synaptosomes only during the initial seconds of KCl-induced depolarization. The greatest increase was observed during the first second of depolarization. No effect was observed after greater than or equal to 5 sec of depolarization. Bay K 8644 did not alter Ca2+ uptake or dopamine release under resting conditions (5 mM KCl) or in response to KCl at greater than 15 mM. The activity of Bay K 8644 was also attenuated by lowering the concentrations of divalent cations in the incubation medium. Agonist activity was observed at Mg2+ concentrations greater than 500 microM (Ca2+ held at 100 microM) and Ca2+ concentrations greater than 100 microM (Mg2+ held at 1000 microM). These results suggest that the Ca2+ channels present in synaptosomes are sensitive to nanomolar concentrations of dihydropyridine agonists under a narrow range of experimental conditions.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D., Eckert R. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2518–2522. doi: 10.1073/pnas.84.8.2518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P. Nitrendipine block of cardiac calcium channels: high-affinity binding to the inactivated state. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6388–6392. doi: 10.1073/pnas.81.20.6388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaustein M. P., Goldring J. M. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol. 1975 Jun;247(3):589–615. doi: 10.1113/jphysiol.1975.sp010949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  5. Cheung W. T., Shi M. M., Young J. D., Lee C. M. Inhibition of radioligand binding to A1 adenosine receptors by Bay K8644 and nifedipine. Biochem Pharmacol. 1987 Jul 1;36(13):2183–2186. doi: 10.1016/0006-2952(87)90148-1. [DOI] [PubMed] [Google Scholar]
  6. Cortés R., Supavilai P., Karobath M., Palacios J. M. Calcium antagonist binding sites in the rat brain: quantitative autoradiographic mapping using the 1,4-dihydropyridines [3H]PN 200-110 and [3H]PY 108-068. J Neural Transm. 1984;60(3-4):169–197. doi: 10.1007/BF01249092. [DOI] [PubMed] [Google Scholar]
  7. Cotman C. W. Isolation of synaptosomal and synaptic plasma membrane fractions. Methods Enzymol. 1974;31:445–452. doi: 10.1016/0076-6879(74)31050-6. [DOI] [PubMed] [Google Scholar]
  8. Creba J. A., Karobath M. The effect of dihydropyridine calcium agonists and antagonists on neuronal voltage sensitive calcium channels. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1038–1047. doi: 10.1016/0006-291x(86)90356-6. [DOI] [PubMed] [Google Scholar]
  9. Daniell L. C., Barr E. M., Leslie S. W. 45Ca2+ uptake into rat whole brain synaptosomes unaltered by dihydropyridine calcium antagonists. J Neurochem. 1983 Nov;41(5):1455–1459. doi: 10.1111/j.1471-4159.1983.tb00845.x. [DOI] [PubMed] [Google Scholar]
  10. Fleckenstein A. History of calcium antagonists. Circ Res. 1983 Feb;52(2 Pt 2):I3–16. [PubMed] [Google Scholar]
  11. Franckowiak G., Bechem M., Schramm M., Thomas G. The optical isomers of the 1,4-dihydropyridine BAY K 8644 show opposite effects on Ca channels. Eur J Pharmacol. 1985 Aug 15;114(2):223–226. doi: 10.1016/0014-2999(85)90631-4. [DOI] [PubMed] [Google Scholar]
  12. Freedman S. B., Miller R. J. Calcium channel activation: a different type of drug action. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5580–5583. doi: 10.1073/pnas.81.17.5580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Garcia M. L., King V. F., Siegl P. K., Reuben J. P., Kaczorowski G. J. Binding of Ca2+ entry blockers to cardiac sarcolemmal membrane vesicles. Characterization of diltiazem-binding sites and their interaction with dihydropyridine and aralkylamine receptors. J Biol Chem. 1986 Jun 25;261(18):8146–8157. [PubMed] [Google Scholar]
  14. García A. G., Sala F., Reig J. A., Viniegra S., Frías J., Fontériz R., Gandía L. Dihydropyridine BAY-K-8644 activates chromaffin cell calcium channels. Nature. 1984 May 3;309(5963):69–71. doi: 10.1038/309069a0. [DOI] [PubMed] [Google Scholar]
  15. Gould R. J., Murphy K. M., Snyder S. H. Autoradiographic localization of calcium channel antagonist receptors in rat brain with [3H]nitrendipine. Brain Res. 1985 Mar 25;330(2):217–223. doi: 10.1016/0006-8993(85)90680-8. [DOI] [PubMed] [Google Scholar]
  16. Greenberg D. A., Carpenter C. L., Cooper E. C. Stimulation of calcium uptake in PC12 cells by the dihydropyridine agonist BAY K 8644. J Neurochem. 1985 Sep;45(3):990–993. doi: 10.1111/j.1471-4159.1985.tb04095.x. [DOI] [PubMed] [Google Scholar]
  17. Hagiwara S., Byerly L. Calcium channel. Annu Rev Neurosci. 1981;4:69–125. doi: 10.1146/annurev.ne.04.030181.000441. [DOI] [PubMed] [Google Scholar]
  18. Hof R. P., Rüegg U. T., Hof A., Vogel A. Stereoselectivity at the calcium channel: opposite action of the enantiomers of a 1,4-dihydropyridine. J Cardiovasc Pharmacol. 1985 Jul-Aug;7(4):689–693. doi: 10.1097/00005344-198507000-00012. [DOI] [PubMed] [Google Scholar]
  19. Holz G. G., 4th, Dunlap K., Kream R. M. Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. J Neurosci. 1988 Feb;8(2):463–471. doi: 10.1523/JNEUROSCI.08-02-00463.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hume J. R. Comparative interactions of organic Ca++ channel antagonists with myocardial Ca++ and K+ channels. J Pharmacol Exp Ther. 1985 Jul;234(1):134–140. [PubMed] [Google Scholar]
  21. Hwang K. S., Van Breemen C. Effects of the Ca agonist Bay K8644 on 45Ca influx and net Ca uptake into rabbit aortic smooth muscle. Eur J Pharmacol. 1985 Oct 22;116(3):299–305. doi: 10.1016/0014-2999(85)90166-9. [DOI] [PubMed] [Google Scholar]
  22. Janis R. A., Scriabine A. Sites of action of Ca2+ channel inhibitors. Biochem Pharmacol. 1983 Dec 1;32(23):3499–3507. doi: 10.1016/0006-2952(83)90295-2. [DOI] [PubMed] [Google Scholar]
  23. Kongsamut S., Miller R. J. Nerve growth factor modulates the drug sensitivity of neurotransmitter release from PC-12 cells. Proc Natl Acad Sci U S A. 1986 Apr;83(7):2243–2247. doi: 10.1073/pnas.83.7.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leslie S. W., Barr E., Chandler J., Farrar R. P. Inhibition of fast- and slow-phase depolarization-dependent synaptosomal calcium uptake by ethanol. J Pharmacol Exp Ther. 1983 Jun;225(3):571–575. [PubMed] [Google Scholar]
  25. Leslie S. W., Woodward J. J., Wilcox R. E. Correlation of rates of calcium entry and endogenous dopamine release in mouse striatal synaptosomes. Brain Res. 1985 Jan 28;325(1-2):99–105. doi: 10.1016/0006-8993(85)90306-3. [DOI] [PubMed] [Google Scholar]
  26. Maan A. C., Ptasienski J., Hosey M. M. Influence of Mg++ on the effect of diltiazem to increase dihydropyridine binding to receptors on Ca++-channels in chick cardiac and skeletal muscle membranes. J Pharmacol Exp Ther. 1986 Dec;239(3):768–774. [PubMed] [Google Scholar]
  27. McCleskey E. W., Fox A. P., Feldman D., Tsien R. W. Different types of calcium channels. J Exp Biol. 1986 Sep;124:177–190. doi: 10.1242/jeb.124.1.177. [DOI] [PubMed] [Google Scholar]
  28. Middlemiss D. N., Spedding M. A functional correlate for the dihydropyridine binding site in rat brain. Nature. 1985 Mar 7;314(6006):94–96. doi: 10.1038/314094a0. [DOI] [PubMed] [Google Scholar]
  29. Middlemiss D. N. The calcium channel activator, Bay K 8644, enhances K+-evoked efflux of acetylcholine and noradrenaline from rat brain slices. Naunyn Schmiedebergs Arch Pharmacol. 1985 Oct;331(1):114–116. doi: 10.1007/BF00498860. [DOI] [PubMed] [Google Scholar]
  30. Montiel C., Artalejo A. R., García A. G. Effects of the novel dihydropyridine BAY-K-8644 on adrenomedullary catecholamine release evoked by calcium reintroduction. Biochem Biophys Res Commun. 1984 May 16;120(3):851–857. doi: 10.1016/s0006-291x(84)80185-0. [DOI] [PubMed] [Google Scholar]
  31. Nachshen D. A., Blaustein M. P. Some properties of potassium-stimulated calcium influx in presynaptic nerve endings. J Gen Physiol. 1980 Dec;76(6):709–728. doi: 10.1085/jgp.76.6.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nachshen D. A., Blaustein M. P. The effects of some organic "calcium antagonists" on calcium influx in presynaptic nerve terminals. Mol Pharmacol. 1979 Sep;16(2):576–586. [PubMed] [Google Scholar]
  33. Nowycky M. C., Fox A. P., Tsien R. W. Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2178–2182. doi: 10.1073/pnas.82.7.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  35. OYAMA V. I., EAGLE H. Measurement of cell growth in tissue culture with a phenol reagent (folin-ciocalteau). Proc Soc Exp Biol Med. 1956 Feb;91(2):305–307. doi: 10.3181/00379727-91-22245. [DOI] [PubMed] [Google Scholar]
  36. Perney T. M., Hirning L. D., Leeman S. E., Miller R. J. Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6656–6659. doi: 10.1073/pnas.83.17.6656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ptasienski J., McMahon K. K., Hosey M. M. High and low affinity states of the dihydropyridine and phenylalkylamine receptors on the cardiac calcium channel and their interconversion by divalent cations. Biochem Biophys Res Commun. 1985 Jun 28;129(3):910–917. doi: 10.1016/0006-291x(85)91978-3. [DOI] [PubMed] [Google Scholar]
  38. Rampe D., Janis R. A., Triggle D. J. BAY K 8644, a 1,4-dihydropyridine Ca2+ channel activator: dissociation of binding and functional effects in brain synaptosomes. J Neurochem. 1984 Dec;43(6):1688–1692. doi: 10.1111/j.1471-4159.1984.tb06096.x. [DOI] [PubMed] [Google Scholar]
  39. Reynolds I. J., Wagner J. A., Snyder S. H., Thayer S. A., Olivera B. M., Miller R. J. Brain voltage-sensitive calcium channel subtypes differentiated by omega-conotoxin fraction GVIA. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8804–8807. doi: 10.1073/pnas.83.22.8804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schramm M., Thomas G., Towart R., Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature. 1983 Jun 9;303(5917):535–537. doi: 10.1038/303535a0. [DOI] [PubMed] [Google Scholar]
  41. Schramm M., Towart R., Lamp B., Thomas G. Modulation of calcium ion influx by the 1,4-dihydropyridines nifedipine and BAY K 8644. J Cardiovasc Pharmacol. 1985 May-Jun;7(3):493–496. doi: 10.1097/00005344-198505000-00012. [DOI] [PubMed] [Google Scholar]
  42. Severson J. A. Neurotransmitter receptor interactions with G-proteins: a critical link in receptor response mechanisms. Neurobiol Aging. 1988 Jan-Feb;9(1):67–68. doi: 10.1016/s0197-4580(88)80026-5. [DOI] [PubMed] [Google Scholar]
  43. Skattebøl A., Triggle D. J. 45Ca2+ uptake in rat brain neurons: absence of sensitivity to the Ca2+ channel ligands nitrendipine and Bay K 8644. Can J Physiol Pharmacol. 1987 Mar;65(3):344–347. doi: 10.1139/y87-059. [DOI] [PubMed] [Google Scholar]
  44. Skattebøl A., Triggle D. J. Regional distribution of calcium channel ligand (1,4-dihydropyridine) binding sites and 45Ca2+ uptake processes in rat brain. Biochem Pharmacol. 1987 Dec 1;36(23):4163–4166. doi: 10.1016/0006-2952(87)90575-2. [DOI] [PubMed] [Google Scholar]
  45. Suszkiw J. B., O'Leary M. E., Murawsky M. M., Wang T. Presynaptic calcium channels in rat cortical synaptosomes: fast-kinetics of phasic calcium influx, channel inactivation, and relationship to nitrendipine receptors. J Neurosci. 1986 May;6(5):1349–1357. doi: 10.1523/JNEUROSCI.06-05-01349.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Thayer S. A., Murphy S. N., Miller R. J. Widespread distribution of dihydropyridine-sensitive calcium channels in the central nervous system. Mol Pharmacol. 1986 Dec;30(6):505–509. [PubMed] [Google Scholar]
  47. Tsien R. W. Calcium channels in excitable cell membranes. Annu Rev Physiol. 1983;45:341–358. doi: 10.1146/annurev.ph.45.030183.002013. [DOI] [PubMed] [Google Scholar]
  48. Wei J. W., Chiang D. H. Studies of [3H]nitrendipine binding and KCl-induced calcium uptake in rat cortical synaptosomes. Gen Pharmacol. 1985;16(3):211–216. doi: 10.1016/0306-3623(85)90071-0. [DOI] [PubMed] [Google Scholar]
  49. White E. J., Bradford H. F. Enhancement of depolarization-induced synaptosomal calcium uptake and neurotransmitter release by Bay K8644. Biochem Pharmacol. 1986 Jul 1;35(13):2193–2197. doi: 10.1016/0006-2952(86)90591-5. [DOI] [PubMed] [Google Scholar]
  50. Woodward J. J., Leslie S. W. Bay K 8644 stimulation of calcium entry and endogenous dopamine release in rat striatal synaptosomes antagonized by nimodipine. Brain Res. 1986 Apr 9;370(2):397–400. doi: 10.1016/0006-8993(86)90502-0. [DOI] [PubMed] [Google Scholar]
  51. Woodward J. J., Wilcox R. E., Leslie S. W., Riffee W. H. Dopamine uptake during fast-phase endogenous dopamine release from mouse striatal synaptosomes. Neurosci Lett. 1986 Oct 30;71(1):106–112. doi: 10.1016/0304-3940(86)90265-x. [DOI] [PubMed] [Google Scholar]
  52. Yatani A., Brown A. M. The calcium channel blocker nitrendipine blocks sodium channels in neonatal rat cardiac myocytes. Circ Res. 1985 Jun;56(6):868–875. doi: 10.1161/01.res.56.6.868. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES