Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(20):7457–7461. doi: 10.1073/pnas.85.20.7457

Redox reactivity of bacterial and mammalian ferritin: is reductant entry into the ferritin interior a necessary step for iron release?

G D Watt 1, D Jacobs 1, R B Frankel 1
PMCID: PMC282210  PMID: 2845407

Abstract

Both mammalian and bacterial ferritin undergo rapid reaction with small-molecule reductants, in the absence of Fe2+ chelators, to form ferritins with reduced (Fe2+) mineral cores. Large, low-potential reductants (flavoproteins and ferredoxins) similarly react anaerobically with both ferritin types to quantitatively produce Fe2+ in the ferritin cores. The oxidation of Fe2+ ferritin by large protein oxidants [cytochrome c and Cu(II) proteins] also occurs readily, yielding reduced heme and Cu(I) proteins and ferritins with Fe3+ in their cores. These latter oxidants also convert enthetically added Fe2+, bound in mammalian or bacterial apo- or holoferritin, to the corresponding Fe3+ state in the core of each ferritin type. Because the protein reductants and oxidants are much larger than the channels leading into the mineral core attached to the ferritin interior, we conclude that redox reactions involving the Fe2+/Fe3+ components of the ferritin core can occur without direct interaction of the redox reagent at the mineral core surface. Our results also suggest that the oxo, hydroxy species of the core, composed essentially of Fe(O)OH, arise exclusively from solvent deprotonation. The long-distance ferritin-protein electron transfer observed in this study may occur by electron tunneling.

Full text

PDF
7457

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisen P., Listowsky I. Iron transport and storage proteins. Annu Rev Biochem. 1980;49:357–393. doi: 10.1146/annurev.bi.49.070180.002041. [DOI] [PubMed] [Google Scholar]
  2. Banyard S. H., Stammers D. K., Harrison P. M. Electron density map of apoferritin at 2.8-A resolution. Nature. 1978 Jan 19;271(5642):282–284. doi: 10.1038/271282a0. [DOI] [PubMed] [Google Scholar]
  3. Bechtold R., Kuehn C., Lepre C., Isied S. S. Directional electron transfer in ruthenium-modified horse heart cytochrome c. Nature. 1986 Jul 17;322(6076):286–288. doi: 10.1038/322286a0. [DOI] [PubMed] [Google Scholar]
  4. Bryce C. F., Crichton R. R. The catalytic activity of horse spleen apoferritin. Preliminary kinetic studies and the effect of chemical modification. Biochem J. 1973 Jun;133(2):301–309. doi: 10.1042/bj1330301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bulen W. A., LeComte J. R., Lough S. A hemoprotein from azotobacter containing non-heme iron: isolation and crystallization. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1274–1281. doi: 10.1016/0006-291x(73)91125-x. [DOI] [PubMed] [Google Scholar]
  6. Burgess B. K., Jacobs D. B., Stiefel E. I. Large-scale purification of high activity Azotobacter vinelandII nitrogenase. Biochim Biophys Acta. 1980 Jul 10;614(1):196–209. doi: 10.1016/0005-2744(80)90180-1. [DOI] [PubMed] [Google Scholar]
  7. Davis R. C., Knotts R. R., Seely G. R., Shaw E. R. A non-fluorescent complex of chlorophyll a with plastocyanin. Biochem Biophys Res Commun. 1985 Jan 16;126(1):610–614. doi: 10.1016/0006-291x(85)90649-7. [DOI] [PubMed] [Google Scholar]
  8. Fish W. W. Ferritin structure: possible models for apoferritin subunit arrangement. J Theor Biol. 1976 Aug 7;60(2):385–392. doi: 10.1016/0022-5193(76)90064-3. [DOI] [PubMed] [Google Scholar]
  9. Ford G. C., Harrison P. M., Rice D. W., Smith J. M., Treffry A., White J. L., Yariv J. Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551–565. doi: 10.1098/rstb.1984.0046. [DOI] [PubMed] [Google Scholar]
  10. Goldner B. G., Rinehart A. L., Benshoff H. M., Harris D. C. Model system oxidations supporting the crystal growth model of ferritin iron uptake. Biochim Biophys Acta. 1982 Dec 17;719(3):641–643. doi: 10.1016/0304-4165(82)90255-0. [DOI] [PubMed] [Google Scholar]
  11. Jones T., Spencer R., Walsh C. Mechanism and kinetics of iron release from ferritin by dihydroflavins and dihydroflavin analogues. Biochemistry. 1978 Sep 19;17(19):4011–4017. doi: 10.1021/bi00612a021. [DOI] [PubMed] [Google Scholar]
  12. Macara I. G., Hoy T. G., Harrison P. M. The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake. Biochem J. 1972 Jan;126(1):151–162. doi: 10.1042/bj1260151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mayo S. L., Ellis W. R., Jr, Crutchley R. J., Gray H. B. Long-range electron transfer in heme proteins. Science. 1986 Aug 29;233(4767):948–952. doi: 10.1126/science.3016897. [DOI] [PubMed] [Google Scholar]
  14. Niederer W. Ferritin: iron incorporation and iron release. Experientia. 1970;26(2):218–220. doi: 10.1007/BF01895596. [DOI] [PubMed] [Google Scholar]
  15. Sirivech S., Frieden E., Osaki S. The release of iron from horse spleen ferritin by reduced flavins. Biochem J. 1974 Nov;143(2):311–315. doi: 10.1042/bj1430311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stiefel E. I., Watt G. D. Azotobacter cytochrome b557.5 is a bacterioferritin. Nature. 1979 May 3;279(5708):81–83. doi: 10.1038/279081a0. [DOI] [PubMed] [Google Scholar]
  17. Stuhrmann H. B., Haas J., Ibel K., Koch M. H., Crichton R. R. Low angle neutron scattering of ferritin studied by contrast variation. J Mol Biol. 1976 Jan 25;100(3):399–413. doi: 10.1016/s0022-2836(76)80071-x. [DOI] [PubMed] [Google Scholar]
  18. Trefry A., Harrison P. M. Incorporation and release of inorganic phosphate in horse spleen ferritin. Biochem J. 1978 May 1;171(2):313–320. doi: 10.1042/bj1710313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ulvik R. J., Romslo I., Roland F., Crichton R. R. Mobilization of iron from ferritin by isolated mitochondria. Effects of species compatibility between ferritin and mitochondria and iron content of ferritin. Biochim Biophys Acta. 1981 Sep 18;677(1):50–56. doi: 10.1016/0304-4165(81)90144-6. [DOI] [PubMed] [Google Scholar]
  20. Watt G. D., Frankel R. B., Papaefthymiou G. C. Reduction of mammalian ferritin. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3640–3643. doi: 10.1073/pnas.82.11.3640. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES