Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(20):7551–7555. doi: 10.1073/pnas.85.20.7551

Human beta 2-adrenergic receptors expressed in Escherichia coli membranes retain their pharmacological properties.

S Marullo 1, C Delavier-Klutchko 1, Y Eshdat 1, A D Strosberg 1, L Emorine 1
PMCID: PMC282229  PMID: 2845411

Abstract

The coding region of the gene for the human beta 2-adrenergic receptor gene was fused to the beta-galactosidase gene of the lambda gt11 expression vector. The Y1089 Escherichia coli strain was lysogenized with this modified vector and transcription of the fusion gene was induced. Expression of this transcription unit was shown by the appearance in the bacteria of proteins of molecular weight higher than that of native beta-galactosidase, which are immunoreactive with anti-beta-galactosidase antibodies. Production of beta 2-adrenergic receptors was shown by the presence, on intact bacteria, of binding sites for catecholamine agonists and antagonists possessing a typical beta 2-adrenergic pharmacological profile. Binding and photoaffinity labeling studies performed on intact E. coli and its membrane fractions showed that these binding sites are located in the inner membrane of the bacteria. Expression of pharmacologically active human beta 2-adrenergic receptors in E. coli further supports the similar transmembrane organization proposed for bacteriorhodopsin and eukaryotic membrane-embedded receptors coupled to guanine nucleotide-binding regulatory proteins. Moreover, this system should facilitate future analyses of the ligand-binding properties within this family of membrane receptors.

Full text

PDF
7551

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner T. I., Buckley N. J., Young A. C., Brann M. R. Identification of a family of muscarinic acetylcholine receptor genes. Science. 1987 Jul 31;237(4814):527–532. doi: 10.1126/science.3037705. [DOI] [PubMed] [Google Scholar]
  2. Cervantes-Olivier P., Delavier-Klutchko C., Durieu-Trautmann O., Kaveri S., Desmandril M., Strosberg A. D. The beta 2-adrenergic receptors of human epidermoid carcinoma cells bear two different types of oligosaccharides which influence expression on the cell surface. Biochem J. 1988 Feb 15;250(1):133–143. doi: 10.1042/bj2500133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cervantes-Olivier P., Durieu-Trautmann O., Delavier-Klutchko C., Strosberg A. D. The oligosaccharide moiety of the beta 1-adrenergic receptor from turkey erythrocytes has a biantennary, N-acetyllactosamine-containing structure. Biochemistry. 1985 Jul 2;24(14):3765–3770. doi: 10.1021/bi00335a052. [DOI] [PubMed] [Google Scholar]
  4. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  5. Dixon R. A., Kobilka B. K., Strader D. J., Benovic J. L., Dohlman H. G., Frielle T., Bolanowski M. A., Bennett C. D., Rands E., Diehl R. E. Cloning of the gene and cDNA for mammalian beta-adrenergic receptor and homology with rhodopsin. Nature. 1986 May 1;321(6065):75–79. doi: 10.1038/321075a0. [DOI] [PubMed] [Google Scholar]
  6. Dixon R. A., Sigal I. S., Candelore M. R., Register R. B., Scattergood W., Rands E., Strader C. D. Structural features required for ligand binding to the beta-adrenergic receptor. EMBO J. 1987 Nov;6(11):3269–3275. doi: 10.1002/j.1460-2075.1987.tb02645.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Emorine L. J., Marullo S., Delavier-Klutchko C., Kaveri S. V., Durieu-Trautmann O., Strosberg A. D. Structure of the gene for human beta 2-adrenergic receptor: expression and promoter characterization. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6995–6999. doi: 10.1073/pnas.84.20.6995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frielle T., Collins S., Daniel K. W., Caron M. G., Lefkowitz R. J., Kobilka B. K. Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7920–7924. doi: 10.1073/pnas.84.22.7920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hackett N. R., Stern L. J., Chao B. H., Kronis K. A., Khorana H. G. Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. J Biol Chem. 1987 Jul 5;262(19):9277–9284. [PubMed] [Google Scholar]
  10. Kobilka B. K., Matsui H., Kobilka T. S., Yang-Feng T. L., Francke U., Caron M. G., Lefkowitz R. J., Regan J. W. Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science. 1987 Oct 30;238(4827):650–656. doi: 10.1126/science.2823383. [DOI] [PubMed] [Google Scholar]
  11. Kubo T., Fukuda K., Mikami A., Maeda A., Takahashi H., Mishina M., Haga T., Haga K., Ichiyama A., Kangawa K. Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature. 1986 Oct 2;323(6087):411–416. doi: 10.1038/323411a0. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K., Favre M. Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol. 1973 Nov 15;80(4):575–599. doi: 10.1016/0022-2836(73)90198-8. [DOI] [PubMed] [Google Scholar]
  13. Masu Y., Nakayama K., Tamaki H., Harada Y., Kuno M., Nakanishi S. cDNA cloning of bovine substance-K receptor through oocyte expression system. 1987 Oct 29-Nov 4Nature. 329(6142):836–838. doi: 10.1038/329836a0. [DOI] [PubMed] [Google Scholar]
  14. Minneman K. P., Hegstrand L. R., Molinoff P. B. Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol. 1979 Jul;16(1):34–46. [PubMed] [Google Scholar]
  15. Pacaud M. Purification and characterization of two novel proteolytic enzymes in membranes of Escherichia coli. Protease IV and protease V. J Biol Chem. 1982 Apr 25;257(8):4333–4339. [PubMed] [Google Scholar]
  16. Reddy P., Miller D., Peterkofsky A. Stimulation of Escherichia coli adenylate cyclase activity by elongation factor Tu, a GTP-binding protein essential for protein synthesis. J Biol Chem. 1986 Sep 5;261(25):11448–11451. [PubMed] [Google Scholar]
  17. Spiegel A. M. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endocrinol. 1987 Jan;49(1):1–16. doi: 10.1016/0303-7207(87)90058-x. [DOI] [PubMed] [Google Scholar]
  18. Stiles G. L. Deglycosylated mammalian beta 2-adrenergic receptors: effect on radioligand binding and peptide mapping. Arch Biochem Biophys. 1985 Feb 15;237(1):65–71. doi: 10.1016/0003-9861(85)90254-1. [DOI] [PubMed] [Google Scholar]
  19. Swamy K. H., Goldberg A. L. Subcellular distribution of various proteases in Escherichia coli. J Bacteriol. 1982 Mar;149(3):1027–1033. doi: 10.1128/jb.149.3.1027-1033.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES