Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 9;65(Pt 10):o2405–o2406. doi: 10.1107/S1600536809035648

3,6,9,16,19,22-Hexaaza­tricyclo­[22.2.2.211,14]­triaconta-1(27),11 (30),12,14(29),24(28),25-hexa­ene hexa­kis(p-toluene­sulfonate) dihydrate

Musabbir A Saeed a, Jameskia J Thompson a, Frank R Fronczek b, Md Alamgir Hossain a,*
PMCID: PMC2822386  NIHMSID: NIHMS173761  PMID: 20165564

Abstract

In the title compound, C24H44N6 6+·6C7H7O3S·2H2O, the macrocycle crystallizes in its hexa­protonated form, accompanied by six p-toluene­sulfonate ions and two water mol­ecules, and lies on an inversion center. The three independent p-toluene­sulfonate anions and their inversion equivalents at (1 − x, 1 − y, 1 − z) are linked to the macrocyclic cation through N—H⋯O hydrogen bonds. Of these, two p-toluene­sulfonate ions are located on opposite sides of the macrocyclic plane and are linked to bridgehead N atoms via N—H⋯O hydrogen bonds. The remaining four p-toluene­sulfonate ions bridge two adjacent macrocyclic cationic units through N—H⋯O hydrogen bonding involving other N atoms, forming a chain along the a axis. The water mol­ecules, which could not be located and may be disordered, do not inter­act with the macrocycle; however, they form hydrogen bonds with anions.

Related literature

For general background, see: Bianchi et al. (1997); Chen & Martell (1991); Hossain (2008); Llobet et al. (1994); Nagarajan & Ganem (1987); Ragunathan & Schneider (1996). For related structures, see: Bazzicalupi et al. (1995); Clifford et al. (2001); He et al. (2000); Li et al. (2009); Liu et al. (2008); Lu et al. (1995, 1998); Zhu et al. (2002).graphic file with name e-65-o2405-scheme1.jpg

Experimental

Crystal data

  • C24H44N6 6+·6C7H7O3S·2H2O

  • M r = 1479.80

  • Triclinic, Inline graphic

  • a = 11.513 (3) Å

  • b = 12.639 (5) Å

  • c = 13.556 (6) Å

  • α = 78.578 (16)°

  • β = 71.88 (2)°

  • γ = 89.30 (2)°

  • V = 1835.0 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 90 K

  • 0.17 × 0.10 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.947, T max = 0.992

  • 27691 measured reflections

  • 7213 independent reflections

  • 2920 reflections with I > 2σ(I)

  • R int = 0.145

Refinement

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.156

  • S = 0.97

  • 7213 reflections

  • 446 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035648/ci2898sup1.cif

e-65-o2405-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035648/ci2898Isup2.hkl

e-65-o2405-Isup2.hkl (352.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O7i 0.92 1.86 2.738 (5) 159
N1—H12N⋯O8 0.92 2.10 2.923 (6) 148
N1—H12N⋯O9 0.92 2.33 3.130 (5) 145
N2—H21N⋯O5 0.92 1.85 2.745 (5) 164
N2—H22N⋯O1ii 0.92 1.83 2.706 (4) 159
N3—H31N⋯O4ii 0.92 1.84 2.748 (4) 168
N3—H32N⋯O2 0.92 1.92 2.842 (5) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Institutes of Health, Division of National Center for Research Resources, under grant No. G12RR013459. The purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

supplementary crystallographic information

Comment

Azamacrocyles mimic many natural polyamines including putrescine, spermidine and spermine, that are known to complex negatively charged nucleotides through hydrogen bonding interactions with phosphate groups (Nagarajan & Ganem, 1987; Bianchi et al., 1997)). Simple hexaazamacrocycles which are conveniently synthesized from Schiff base derived reaction (Chen & Martell, 1991) are known to complex both anions and cations (Llobet et al., 1994; Hossain, 2008). For example, m-xylyl macrocycle with six N atoms and rigid spacers were shown to form complexes with sulfate (Clifford et al., 2001), pyrophosphate (Lu et al., 1995), and triphosphate (Lu et al., 1998). A m-xylyl analogue with propylene chains, was recently reported to complex with chloride showing a chair-like structure, where chloride anions are bonded to protonated amines outside the cavity (Liu et al., 2008). The macrocycle in the title compound containing slightly larger cavity with p-xylyl groups, was reported to bind perchlorate (Bazzicalupi, et al., 1995) and benzene-1,2,4,5-tetracarboxylate ((Zhu et al., 2002) in the tetraprotonated form. Incorporating metal ions, this compound was found to catalyze the hydrolysis of bis(p-nitrophenyl)-phosphate (Ragunathan & Schneider, 1996), and was also shown to bind calf thymus DNA (Li et al., 2009). As a part of our work in the field of anion recognition, we synthesized the p-xylyl based macrocycle and isolated crystals of the p-toluenesulfonate salt. This report describes the synthesis and structural aspect of a ditopic anion complex of p-xylyl macrocycle.

Single crystal analysis of the p-toluenesulfonate salt reveals that the ligand is hexaprotonated and crystallized with six p-toluenesulfonate anions and two water molecules. Each protonated amine of the macrocycle is involved in coordinating one p-toluenesulfonate with short (N···O) hydrogen bonds (Table 1). The cationic macrocycle lies on an inversion center. The macrocycle is found to adopt a rectangular shape in which two aromatic units are parallel to each other with a centroid-to-centroid distance of 9.990 Å (Fig. 1). The shape of the macrocycle is quite different from those observed in the neutral macrocycle (He et al., 2000) or its larger cationic analogue with m-xylyl spacers in the chloride complex (Liu et al., 2008), both of which adopt a chair conformation with two flip-flop aromatic moieties. In the solid state, the hydrogen atoms on the bridgehead amines direct toward the cavity, while those on the remaining nitrogen atoms point outwards from the cavity to minimize the electrostatic repulsion forces. The NCCN chains (N1—C1—C2—N2, N3—C11—C12—N1 and their symmetry related counterparts) linking the bridgehead N atoms, are essentially unstrained, with the torsion angles of -172.0 (4) and 170.9 (4)°, close to the trans conformation (ca 180°). On the other hand, gauche conformations (ca 60°) were found for the CNCC chains (C2—N2—C3—C4, C11—N3—C10—C7i and their counterparts) associated with the aromatic rings, with torsion angles of -51.8 (5) and 51.9 (5)°.

All six p-toluenesulfonate anions are strongly bonded to both faces of the macrocycle, with three groups at each face (Fig. 2). Four p-toluenesulfonates are singly bonded to the protonated amines (N2, N2i, N3 and N3i) linking the aromatic spacers, with almost linear N—H···O interactions (164 to 177 °). The distances in N···O bonds are in the range from 2.706 (4) to 2.842 (5) Å. Two other anionic groups are located above and below the macrocyclic plane, each with two N···O bonds with the central amines (N1 and N1i). In this case two oxygen atoms, O7 and O8 and their symmetry related O7ii and O8ii act as hydrogen bond acceptors and bridge the amines from the opposite sides. These two anions are partially included in the cavity with a ditopic binding mode (Fig. 3). In the crystal structure, the ionic units are linked by N—H..O hydrogen bonds forming a chain along the a axis. Along the c axis, the C4-C9 aromatic rings of the adjacent chains are stacked, with a centroid-to-centroid distance of 4.533 (3) Å (Fig. 4). The anions are found within the channels formed by the macrocycles, facing in opposite directions alternatively and are linked to the macrocycles with extensive hydrogen bonding frameworks.

In summary, a novel ditopic complex of p-toluenesulfonate anion has been synthesized, and its structure has been presented. The surrounding p-toluenesulfonates act as hydrogen bond acceptors for the nitrogen sites in the macrocycle, and play an important role in forming a hydrogen bonding network in the three dimensional structure. The water molecules do not interact with the macrocycle, however they form hydrogen bonds with anions.

Experimental

The synthesis was carried out following a modified literature procedure (Chen & Martell, 1991). An equimolar amount of diethylenetriamine (1.00 g, 9.70 x 10 -3 mol) in CH3OH (200 ml) and terephthalaldehyde (1.30 g, 9.70 x 10 -3 mol) in CH3OH (200 ml) were added to CH3OH (400 ml) over 4 h at 0°C. The mixture was stirred at room temperature for another 24 h. After the solvent was evaporated, the Schiff base was reduced to amine with NaBH4 (1.73 g, 45.7 x 10 -3 mol) in CH3OH (100 ml) at room temperature for 12 h. After evaporating the solvent under reduced pressure, the residue was dissolved in 1 M aq NaOH solution (100 ml), and the aqueous phase was extracted by CH2Cl2 (3x100 ml). The organic layers were combined and dried with MgSO4. Evaporation of the solvent gave a white powder of the neutral macrocycle. Yield: 60%. 1H NMR (300 MHz, CDCl3, TMS): δ 7.29 (s, 8H, ArH), 3.80 (s, 8H, ArCH2), 2.85 (t, 8H, CH2), 2.83 (t, 8H, CH2). The p-toluenesulfonate salt was obtained by titrating the macrocycle (50 mg) dissolved in CH3OH (2 ml) with TsOH. The addition of diethyl ether (2 ml) yielded a white precipitate of p-toluenesulfonate salt that was filtered and dried. Yield: 80%. 1H NMR (300 MHz, D2O, TSP): δ 7.70 (d, 12H, ArH), 7.42 (d, 12H, ArH), 7.26 (s, 8H, ArH), 4.21 (s, 8H, ArCH2), 3.27 (t, 8H, CH2), 3.01 (t, 8H, CH2), 2.43 (s, 12H, CH2). Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent.

Refinement

H atoms on C were placed in idealized positions with C-H distances of 0.95-0.99 Å and thereafter treated as riding. Those on N were all visible in difference maps, but were placed in idealized positions with a N-H distance of 0.92 Å. Uiso(H) values were assigned as 1.2 times Ueq of the attached atom (1.5 for methyl). A torsional parameter was refined for each methyl group. H atoms on the water molecule could not be located.

Figures

Fig. 1.

Fig. 1.

The molecular structure of cationic unit in (1). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z].

Fig. 2.

Fig. 2.

The molecular structure of (1) showing the atom-numbering scheme and hydrogen bonding interactions. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z.]

Fig. 3.

Fig. 3.

Space-filling view of (1) showing two anions bonded with macrocycle at the both faces.

Fig. 4.

Fig. 4.

View of a hydrogen-bonded (dashed lines) chain in (1).

Crystal data

C24H44N66+·6C7H7O3S·2H2O Z = 1
Mr = 1479.80 F(000) = 784
Triclinic, P1 Dx = 1.339 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.513 (3) Å Cell parameters from 6760 reflections
b = 12.639 (5) Å θ = 2.5–26.0°
c = 13.556 (6) Å µ = 0.26 mm1
α = 78.578 (16)° T = 90 K
β = 71.88 (2)° Plate, colorless
γ = 89.30 (2)° 0.17 × 0.10 × 0.03 mm
V = 1835.0 (12) Å3

Data collection

Nonius KappaCCD diffractometer with an Oxford Cryosystems Cryostream cooler 7213 independent reflections
Radiation source: fine-focus sealed tube 2920 reflections with I > 2σ(I)
graphite Rint = 0.145
ω and φ scans θmax = 26.3°, θmin = 2.7°
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) h = −13→14
Tmin = 0.947, Tmax = 0.992 k = −15→15
27691 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072 H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0515P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max = 0.001
7213 reflections Δρmax = 0.39 e Å3
446 parameters Δρmin = −0.33 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (7)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7392 (3) 0.5311 (3) 0.4777 (3) 0.0292 (10)
H11N 0.7039 0.5968 0.4705 0.035*
H12N 0.6798 0.4779 0.4892 0.035*
N2 0.8843 (3) 0.5451 (3) 0.1864 (3) 0.0242 (10)
H21N 0.8920 0.4720 0.1907 0.029*
H22N 0.9589 0.5751 0.1815 0.029*
N3 0.7276 (3) 0.5161 (3) 0.7591 (3) 0.0222 (9)
H31N 0.8044 0.5469 0.7455 0.027*
H32N 0.7331 0.4423 0.7725 0.027*
C1 0.8391 (4) 0.5271 (4) 0.3779 (3) 0.0331 (13)
H1A 0.8667 0.4525 0.3792 0.040*
H1B 0.9097 0.5751 0.3710 0.040*
C2 0.7921 (4) 0.5632 (4) 0.2853 (3) 0.0263 (12)
H2A 0.7146 0.5220 0.2974 0.032*
H2B 0.7753 0.6409 0.2782 0.032*
C3 0.8538 (4) 0.5918 (4) 0.0876 (4) 0.0281 (12)
H3A 0.8608 0.6717 0.0750 0.034*
H3B 0.9132 0.5688 0.0264 0.034*
C4 0.7271 (4) 0.5565 (4) 0.0956 (3) 0.0219 (11)
C5 0.6934 (4) 0.4486 (4) 0.1162 (3) 0.0276 (12)
H5 0.7526 0.3962 0.1200 0.033*
C6 0.5747 (4) 0.4155 (4) 0.1315 (4) 0.0286 (12)
H6 0.5525 0.3404 0.1469 0.034*
C7 0.4869 (4) 0.4901 (4) 0.1246 (3) 0.0245 (12)
C8 0.5205 (4) 0.5989 (4) 0.1009 (3) 0.0253 (12)
H8 0.4624 0.6513 0.0933 0.030*
C9 0.6402 (4) 0.6312 (4) 0.0885 (3) 0.0247 (12)
H9 0.6625 0.7060 0.0748 0.030*
C10 0.6439 (3) 0.5474 (4) 0.8560 (3) 0.0239 (12)
H10A 0.6493 0.6270 0.8477 0.029*
H10B 0.6698 0.5149 0.9180 0.029*
C11 0.6896 (4) 0.5483 (4) 0.6635 (3) 0.0246 (12)
H11A 0.6815 0.6275 0.6486 0.030*
H11B 0.6092 0.5124 0.6751 0.030*
C12 0.7840 (4) 0.5161 (5) 0.5708 (4) 0.0389 (15)
H12A 0.8608 0.5607 0.5523 0.047*
H12B 0.8019 0.4394 0.5905 0.047*
S1 0.86065 (10) 0.27995 (10) 0.83408 (10) 0.0307 (4)
O1 0.8820 (2) 0.3732 (2) 0.8763 (3) 0.0301 (9)
O2 0.7479 (2) 0.2887 (2) 0.8063 (2) 0.0321 (9)
O3 0.9661 (3) 0.2628 (3) 0.7468 (3) 0.0405 (10)
C13 0.8414 (4) 0.1649 (4) 0.9368 (4) 0.0239 (12)
C14 0.8237 (4) 0.0639 (4) 0.9169 (4) 0.0368 (14)
H14 0.8200 0.0575 0.8493 0.044*
C15 0.8115 (4) −0.0272 (4) 0.9950 (4) 0.0385 (14)
H15 0.7995 −0.0961 0.9805 0.046*
C16 0.8164 (4) −0.0201 (4) 1.0952 (4) 0.0298 (13)
C17 0.8351 (4) 0.0810 (4) 1.1128 (4) 0.0349 (13)
H17 0.8388 0.0876 1.1803 0.042*
C18 0.8485 (4) 0.1730 (4) 1.0349 (4) 0.0370 (14)
H18 0.8625 0.2417 1.0488 0.044*
C19 0.8042 (4) −0.1200 (4) 1.1794 (4) 0.0389 (14)
H19A 0.8052 −0.0996 1.2452 0.058*
H19B 0.8725 −0.1659 1.1561 0.058*
H19C 0.7267 −0.1599 1.1919 0.058*
S2 1.03881 (10) 0.29487 (10) 0.21857 (10) 0.0261 (4)
O4 1.0570 (2) 0.3649 (2) 0.2876 (2) 0.0265 (8)
O5 0.9472 (2) 0.3379 (2) 0.1689 (2) 0.0310 (9)
O6 1.1516 (2) 0.2716 (2) 0.1447 (2) 0.0318 (9)
C20 0.9732 (4) 0.1722 (4) 0.3034 (4) 0.0243 (12)
C21 1.0362 (4) 0.0795 (4) 0.3002 (4) 0.0413 (14)
H21 1.1164 0.0814 0.2517 0.050*
C22 0.9831 (5) −0.0177 (4) 0.3677 (5) 0.0515 (16)
H22 1.0270 −0.0817 0.3641 0.062*
C23 0.8652 (5) −0.0217 (5) 0.4410 (4) 0.0444 (15)
C24 0.8042 (4) 0.0714 (5) 0.4437 (4) 0.0429 (15)
H24 0.7245 0.0699 0.4930 0.052*
C25 0.8559 (4) 0.1684 (4) 0.3760 (4) 0.0344 (13)
H25 0.8113 0.2321 0.3791 0.041*
C26 0.8091 (5) −0.1286 (4) 0.5137 (5) 0.0640 (19)
H26A 0.7470 −0.1148 0.5774 0.096*
H26B 0.8731 −0.1706 0.5340 0.096*
H26C 0.7709 −0.1694 0.4765 0.096*
S3 0.51388 (11) 0.31199 (11) 0.53979 (12) 0.0374 (4)
O7 0.4106 (3) 0.2991 (3) 0.5021 (3) 0.0422 (10)
O8 0.6303 (3) 0.3321 (3) 0.4573 (3) 0.0696 (14)
O9 0.4946 (3) 0.3943 (3) 0.6041 (3) 0.0540 (11)
C27 0.5184 (4) 0.1876 (4) 0.6248 (4) 0.0338 (13)
C28 0.4736 (4) 0.0918 (4) 0.6118 (5) 0.0427 (15)
H28 0.4402 0.0912 0.5560 0.051*
C29 0.4784 (5) −0.0029 (5) 0.6816 (6) 0.061 (2)
H29 0.4467 −0.0685 0.6733 0.073*
C30 0.5274 (5) −0.0056 (5) 0.7628 (6) 0.070 (2)
C31 0.5708 (5) 0.0922 (5) 0.7738 (5) 0.075 (2)
H31 0.6030 0.0934 0.8302 0.089*
C32 0.5681 (4) 0.1871 (5) 0.7050 (5) 0.0520 (17)
H32 0.6006 0.2526 0.7127 0.062*
C33 0.5288 (6) −0.1102 (5) 0.8403 (7) 0.118 (4)
H33A 0.5662 −0.1657 0.8009 0.177*
H33B 0.4448 −0.1346 0.8840 0.177*
H33C 0.5764 −0.0978 0.8860 0.177*
O10 1.0391 (4) 0.6764 (4) 0.4660 (4) 0.0990 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.024 (2) 0.042 (3) 0.019 (2) 0.0028 (19) −0.0035 (19) −0.009 (2)
N2 0.0124 (19) 0.037 (3) 0.022 (2) 0.0006 (17) −0.0023 (17) −0.007 (2)
N3 0.0195 (19) 0.028 (2) 0.018 (2) −0.0020 (17) −0.0027 (17) −0.0059 (19)
C1 0.023 (3) 0.056 (4) 0.021 (3) 0.007 (2) −0.005 (2) −0.013 (3)
C2 0.021 (2) 0.033 (3) 0.024 (3) 0.000 (2) −0.003 (2) −0.011 (3)
C3 0.018 (2) 0.048 (3) 0.018 (3) −0.001 (2) −0.005 (2) −0.006 (3)
C4 0.014 (2) 0.036 (3) 0.015 (3) 0.001 (2) −0.001 (2) −0.011 (2)
C5 0.019 (3) 0.039 (4) 0.027 (3) 0.006 (2) −0.006 (2) −0.013 (3)
C6 0.028 (3) 0.027 (3) 0.031 (3) −0.007 (2) −0.009 (2) −0.005 (3)
C7 0.020 (3) 0.035 (3) 0.022 (3) 0.004 (2) −0.008 (2) −0.010 (3)
C8 0.021 (3) 0.034 (3) 0.021 (3) 0.005 (2) −0.006 (2) −0.007 (2)
C9 0.022 (3) 0.030 (3) 0.019 (3) −0.007 (2) 0.000 (2) −0.006 (2)
C10 0.021 (3) 0.034 (3) 0.016 (3) 0.000 (2) −0.004 (2) −0.006 (2)
C11 0.023 (2) 0.033 (3) 0.022 (3) 0.002 (2) −0.013 (2) −0.005 (2)
C12 0.025 (3) 0.075 (4) 0.015 (3) 0.009 (3) −0.005 (2) −0.010 (3)
S1 0.0238 (7) 0.0303 (9) 0.0379 (9) 0.0036 (6) −0.0102 (6) −0.0060 (7)
O1 0.0245 (17) 0.022 (2) 0.047 (2) −0.0024 (14) −0.0159 (16) −0.0081 (17)
O2 0.0287 (18) 0.029 (2) 0.042 (2) 0.0011 (15) −0.0177 (16) −0.0050 (17)
O3 0.0298 (19) 0.044 (2) 0.038 (2) 0.0123 (16) −0.0013 (17) −0.0027 (18)
C13 0.016 (2) 0.024 (3) 0.033 (3) 0.004 (2) −0.006 (2) −0.009 (3)
C14 0.052 (3) 0.033 (4) 0.035 (4) −0.003 (3) −0.020 (3) −0.017 (3)
C15 0.047 (3) 0.026 (4) 0.044 (4) 0.000 (3) −0.014 (3) −0.013 (3)
C16 0.025 (3) 0.028 (4) 0.036 (4) 0.003 (2) −0.010 (2) −0.007 (3)
C17 0.045 (3) 0.029 (4) 0.030 (3) 0.002 (3) −0.014 (3) −0.003 (3)
C18 0.036 (3) 0.032 (4) 0.052 (4) −0.003 (2) −0.018 (3) −0.022 (3)
C19 0.039 (3) 0.039 (4) 0.039 (4) 0.002 (3) −0.012 (3) −0.006 (3)
S2 0.0209 (7) 0.0306 (8) 0.0250 (8) −0.0015 (6) −0.0034 (6) −0.0079 (7)
O4 0.0207 (16) 0.031 (2) 0.030 (2) −0.0027 (14) −0.0065 (14) −0.0141 (17)
O5 0.0295 (18) 0.035 (2) 0.034 (2) 0.0029 (15) −0.0168 (16) −0.0073 (17)
O6 0.0240 (17) 0.039 (2) 0.024 (2) 0.0006 (15) 0.0047 (15) −0.0082 (17)
C20 0.024 (3) 0.027 (3) 0.026 (3) 0.001 (2) −0.011 (2) −0.010 (2)
C21 0.031 (3) 0.035 (4) 0.049 (4) −0.001 (3) 0.001 (3) −0.011 (3)
C22 0.056 (4) 0.025 (4) 0.068 (5) 0.004 (3) −0.017 (3) −0.001 (3)
C23 0.039 (3) 0.041 (4) 0.052 (4) −0.016 (3) −0.021 (3) 0.006 (3)
C24 0.031 (3) 0.047 (4) 0.043 (4) −0.011 (3) −0.008 (3) 0.002 (3)
C25 0.024 (3) 0.035 (4) 0.041 (4) 0.002 (2) −0.009 (3) −0.004 (3)
C26 0.061 (4) 0.046 (4) 0.080 (5) −0.022 (3) −0.030 (3) 0.014 (4)
S3 0.0244 (7) 0.0398 (10) 0.0454 (10) 0.0028 (6) −0.0109 (7) −0.0034 (8)
O7 0.040 (2) 0.046 (2) 0.051 (3) 0.0073 (17) −0.0270 (18) −0.0139 (19)
O8 0.032 (2) 0.066 (3) 0.075 (3) 0.0132 (19) 0.012 (2) 0.021 (2)
O9 0.075 (3) 0.033 (2) 0.072 (3) 0.0047 (19) −0.045 (2) −0.017 (2)
C27 0.022 (3) 0.035 (4) 0.046 (4) −0.002 (2) −0.014 (3) −0.008 (3)
C28 0.031 (3) 0.033 (4) 0.063 (4) −0.009 (3) −0.010 (3) −0.016 (3)
C29 0.039 (3) 0.021 (4) 0.114 (6) −0.004 (3) −0.014 (4) −0.008 (4)
C30 0.051 (4) 0.036 (4) 0.120 (6) −0.011 (3) −0.047 (4) 0.023 (4)
C31 0.071 (5) 0.057 (5) 0.102 (6) −0.025 (4) −0.059 (4) 0.022 (4)
C32 0.052 (4) 0.034 (4) 0.070 (5) −0.018 (3) −0.032 (3) 0.012 (3)
C33 0.106 (6) 0.049 (5) 0.193 (9) −0.030 (4) −0.087 (6) 0.058 (6)
O10 0.116 (4) 0.111 (4) 0.087 (4) 0.044 (3) −0.047 (3) −0.039 (3)

Geometric parameters (Å, °)

N1—C12 1.484 (5) C15—C16 1.397 (7)
N1—C1 1.488 (5) C15—H15 0.95
N1—H11N 0.92 C16—C17 1.376 (6)
N1—H12N 0.92 C16—C19 1.501 (6)
N2—C2 1.486 (5) C17—C18 1.381 (6)
N2—C3 1.496 (5) C17—H17 0.95
N2—H21N 0.92 C18—H18 0.95
N2—H22N 0.92 C19—H19A 0.98
N3—C11 1.476 (5) C19—H19B 0.98
N3—C10 1.490 (5) C19—H19C 0.98
N3—H31N 0.92 S2—O6 1.440 (3)
N3—H32N 0.92 S2—O5 1.465 (3)
C1—C2 1.506 (6) S2—O4 1.469 (3)
C1—H1A 0.99 S2—C20 1.754 (5)
C1—H1B 0.99 C20—C21 1.372 (6)
C2—H2A 0.99 C20—C25 1.397 (6)
C2—H2B 0.99 C21—C22 1.394 (7)
C3—C4 1.496 (5) C21—H21 0.95
C3—H3A 0.99 C22—C23 1.406 (7)
C3—H3B 0.99 C22—H22 0.95
C4—C5 1.372 (6) C23—C24 1.363 (7)
C4—C9 1.379 (6) C23—C26 1.521 (7)
C5—C6 1.374 (5) C24—C25 1.390 (6)
C5—H5 0.95 C24—H24 0.95
C6—C7 1.386 (6) C25—H25 0.95
C6—H6 0.95 C26—H26A 0.98
C7—C8 1.380 (6) C26—H26B 0.98
C7—C10i 1.511 (5) C26—H26C 0.98
C8—C9 1.391 (5) S3—O8 1.440 (4)
C8—H8 0.95 S3—O7 1.455 (3)
C9—H9 0.95 S3—O9 1.457 (4)
C10—C7i 1.511 (5) S3—C27 1.766 (5)
C10—H10A 0.99 C27—C32 1.375 (7)
C10—H10B 0.99 C27—C28 1.386 (6)
C11—C12 1.506 (6) C28—C29 1.383 (7)
C11—H11A 0.99 C28—H28 0.95
C11—H11B 0.99 C29—C30 1.380 (8)
C12—H12A 0.99 C29—H29 0.95
C12—H12B 0.99 C30—C31 1.391 (8)
S1—O2 1.457 (3) C30—C33 1.521 (8)
S1—O3 1.457 (3) C31—C32 1.373 (7)
S1—O1 1.463 (3) C31—H31 0.95
S1—C13 1.765 (5) C32—H32 0.95
C13—C18 1.381 (6) C33—H33A 0.98
C13—C14 1.386 (6) C33—H33B 0.98
C14—C15 1.376 (6) C33—H33C 0.98
C14—H14 0.95
C12—N1—C1 112.2 (3) C15—C14—C13 120.1 (5)
C12—N1—H11N 109.2 C15—C14—H14 119.9
C1—N1—H11N 109.2 C13—C14—H14 119.9
C12—N1—H12N 109.2 C14—C15—C16 121.1 (5)
C1—N1—H12N 109.2 C14—C15—H15 119.4
H11N—N1—H12N 107.9 C16—C15—H15 119.4
C2—N2—C3 113.9 (3) C17—C16—C15 117.7 (5)
C2—N2—H21N 108.8 C17—C16—C19 121.6 (5)
C3—N2—H21N 108.8 C15—C16—C19 120.7 (5)
C2—N2—H22N 108.8 C16—C17—C18 121.8 (5)
C3—N2—H22N 108.8 C16—C17—H17 119.1
H21N—N2—H22N 107.7 C18—C17—H17 119.1
C11—N3—C10 114.6 (3) C17—C18—C13 119.9 (5)
C11—N3—H31N 108.6 C17—C18—H18 120.1
C10—N3—H31N 108.6 C13—C18—H18 120.1
C11—N3—H32N 108.6 C16—C19—H19A 109.5
C10—N3—H32N 108.6 C16—C19—H19B 109.5
H31N—N3—H32N 107.6 H19A—C19—H19B 109.5
N1—C1—C2 109.0 (3) C16—C19—H19C 109.5
N1—C1—H1A 109.9 H19A—C19—H19C 109.5
C2—C1—H1A 109.9 H19B—C19—H19C 109.5
N1—C1—H1B 109.9 O6—S2—O5 113.90 (19)
C2—C1—H1B 109.9 O6—S2—O4 113.11 (17)
H1A—C1—H1B 108.3 O5—S2—O4 110.35 (19)
N2—C2—C1 109.8 (3) O6—S2—C20 107.5 (2)
N2—C2—H2A 109.7 O5—S2—C20 105.69 (19)
C1—C2—H2A 109.7 O4—S2—C20 105.7 (2)
N2—C2—H2B 109.7 C21—C20—C25 119.2 (4)
C1—C2—H2B 109.7 C21—C20—S2 120.8 (4)
H2A—C2—H2B 108.2 C25—C20—S2 120.0 (4)
C4—C3—N2 111.6 (3) C20—C21—C22 120.4 (5)
C4—C3—H3A 109.3 C20—C21—H21 119.8
N2—C3—H3A 109.3 C22—C21—H21 119.8
C4—C3—H3B 109.3 C21—C22—C23 120.5 (5)
N2—C3—H3B 109.3 C21—C22—H22 119.7
H3A—C3—H3B 108.0 C23—C22—H22 119.7
C5—C4—C9 118.8 (4) C24—C23—C22 118.4 (5)
C5—C4—C3 120.4 (4) C24—C23—C26 122.0 (5)
C9—C4—C3 120.7 (4) C22—C23—C26 119.6 (5)
C4—C5—C6 120.6 (4) C23—C24—C25 121.5 (5)
C4—C5—H5 119.7 C23—C24—H24 119.2
C6—C5—H5 119.7 C25—C24—H24 119.2
C5—C6—C7 120.9 (4) C24—C25—C20 120.0 (5)
C5—C6—H6 119.6 C24—C25—H25 120.0
C7—C6—H6 119.6 C20—C25—H25 120.0
C8—C7—C6 119.0 (4) C23—C26—H26A 109.5
C8—C7—C10i 120.6 (4) C23—C26—H26B 109.5
C6—C7—C10i 120.3 (4) H26A—C26—H26B 109.5
C7—C8—C9 119.4 (4) C23—C26—H26C 109.5
C7—C8—H8 120.3 H26A—C26—H26C 109.5
C9—C8—H8 120.3 H26B—C26—H26C 109.5
C4—C9—C8 121.2 (4) O8—S3—O7 114.2 (2)
C4—C9—H9 119.4 O8—S3—O9 110.6 (2)
C8—C9—H9 119.4 O7—S3—O9 111.7 (2)
N3—C10—C7i 111.1 (4) O8—S3—C27 107.7 (2)
N3—C10—H10A 109.4 O7—S3—C27 105.5 (2)
C7i—C10—H10A 109.4 O9—S3—C27 106.6 (2)
N3—C10—H10B 109.4 C32—C27—C28 120.0 (5)
C7i—C10—H10B 109.4 C32—C27—S3 118.6 (4)
H10A—C10—H10B 108.0 C28—C27—S3 121.3 (4)
N3—C11—C12 109.2 (3) C29—C28—C27 118.7 (5)
N3—C11—H11A 109.8 C29—C28—H28 120.7
C12—C11—H11A 109.8 C27—C28—H28 120.7
N3—C11—H11B 109.8 C30—C29—C28 122.4 (5)
C12—C11—H11B 109.8 C30—C29—H29 118.8
H11A—C11—H11B 108.3 C28—C29—H29 118.8
N1—C12—C11 110.5 (4) C29—C30—C31 117.3 (5)
N1—C12—H12A 109.6 C29—C30—C33 121.5 (6)
C11—C12—H12A 109.6 C31—C30—C33 121.2 (6)
N1—C12—H12B 109.6 C32—C31—C30 121.4 (6)
C11—C12—H12B 109.6 C32—C31—H31 119.3
H12A—C12—H12B 108.1 C30—C31—H31 119.3
O2—S1—O3 112.8 (2) C31—C32—C27 120.1 (5)
O2—S1—O1 110.85 (18) C31—C32—H32 119.9
O3—S1—O1 111.88 (19) C27—C32—H32 119.9
O2—S1—C13 107.44 (19) C30—C33—H33A 109.5
O3—S1—C13 106.6 (2) C30—C33—H33B 109.5
O1—S1—C13 106.9 (2) H33A—C33—H33B 109.5
C18—C13—C14 119.4 (5) C30—C33—H33C 109.5
C18—C13—S1 121.5 (4) H33A—C33—H33C 109.5
C14—C13—S1 119.1 (4) H33B—C33—H33C 109.5
C12—N1—C1—C2 −169.6 (4) C14—C13—C18—C17 −1.5 (7)
C3—N2—C2—C1 −172.3 (4) S1—C13—C18—C17 −178.9 (3)
N1—C1—C2—N2 −172.0 (4) O6—S2—C20—C21 7.7 (4)
C2—N2—C3—C4 −51.8 (5) O5—S2—C20—C21 129.6 (4)
N2—C3—C4—C5 −57.0 (6) O4—S2—C20—C21 −113.4 (4)
N2—C3—C4—C9 119.2 (4) O6—S2—C20—C25 −172.8 (4)
C9—C4—C5—C6 −1.2 (7) O5—S2—C20—C25 −50.8 (4)
C3—C4—C5—C6 175.1 (4) O4—S2—C20—C25 66.2 (4)
C4—C5—C6—C7 1.1 (7) C25—C20—C21—C22 0.7 (8)
C5—C6—C7—C8 0.7 (7) S2—C20—C21—C22 −179.7 (4)
C5—C6—C7—C10i −178.6 (4) C20—C21—C22—C23 −1.0 (8)
C6—C7—C8—C9 −2.4 (7) C21—C22—C23—C24 0.5 (8)
C10i—C7—C8—C9 176.9 (4) C21—C22—C23—C26 179.9 (5)
C5—C4—C9—C8 −0.5 (7) C22—C23—C24—C25 0.2 (8)
C3—C4—C9—C8 −176.8 (4) C26—C23—C24—C25 −179.2 (5)
C7—C8—C9—C4 2.3 (7) C23—C24—C25—C20 −0.4 (8)
C11—N3—C10—C7i 51.9 (5) C21—C20—C25—C24 −0.1 (7)
C10—N3—C11—C12 177.8 (4) S2—C20—C25—C24 −179.6 (4)
C1—N1—C12—C11 165.6 (4) O8—S3—C27—C32 84.8 (5)
N3—C11—C12—N1 170.9 (4) O7—S3—C27—C32 −152.9 (4)
O2—S1—C13—C18 −119.5 (4) O9—S3—C27—C32 −33.9 (5)
O3—S1—C13—C18 119.3 (4) O8—S3—C27—C28 −95.0 (4)
O1—S1—C13—C18 −0.5 (4) O7—S3—C27—C28 27.4 (5)
O2—S1—C13—C14 63.1 (4) O9—S3—C27—C28 146.3 (4)
O3—S1—C13—C14 −58.1 (4) C32—C27—C28—C29 1.0 (7)
O1—S1—C13—C14 −177.8 (3) S3—C27—C28—C29 −179.3 (4)
C18—C13—C14—C15 1.0 (7) C27—C28—C29—C30 −0.8 (8)
S1—C13—C14—C15 178.4 (3) C28—C29—C30—C31 1.2 (9)
C13—C14—C15—C16 0.1 (7) C28—C29—C30—C33 178.5 (6)
C14—C15—C16—C17 −0.6 (7) C29—C30—C31—C32 −1.7 (10)
C14—C15—C16—C19 −179.4 (4) C33—C30—C31—C32 −179.1 (6)
C15—C16—C17—C18 0.1 (7) C30—C31—C32—C27 2.0 (9)
C19—C16—C17—C18 178.9 (4) C28—C27—C32—C31 −1.5 (8)
C16—C17—C18—C13 1.0 (7) S3—C27—C32—C31 178.7 (5)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H11N···O7i 0.92 1.86 2.738 (5) 159
N1—H12N···O8 0.92 2.10 2.923 (6) 148
N1—H12N···O9 0.92 2.33 3.130 (5) 145
N2—H21N···O5 0.92 1.85 2.745 (5) 164
N2—H22N···O1ii 0.92 1.83 2.706 (4) 159
N3—H31N···O4ii 0.92 1.84 2.748 (4) 168
N3—H32N···O2 0.92 1.92 2.842 (5) 177
N3—H32N···O1 0.92 2.58 3.081 (4) 115

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2898).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Bazzicalupi, A., Bencini, A., Bianchi, A., Fusi, V., Giorgi, C., Paoletti, P., Stefani, A. & Valtancoli, B. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 275–280.
  3. Bianchi, A., García-España, E. & Bowman-James, K. (1997). Supramolecular Chemistry of Anions New York: Wiley-VCH.
  4. Chen, D. & Martell, A. E. (1991). Tetrahedron, 47, 6895–6902.
  5. Clifford, T., Danby, A., Llinares, J. M., Mason, S., Alcock, N. W., Powell, D., Aguilar, J. A., García-España, E. & Bowman-James, K. (2001). Inorg. Chem.40, 4710–4720. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. He, W.-J., Ye, Z.-F., Xu, Y., Guo, Z.-J. & Zhu, L.-G. (2000). Acta Cryst. C56, 1019–1020. [DOI] [PubMed]
  8. Hossain, M. A. (2008). Curr. Org. Chem.12, 1231–1256.
  9. Li, T., Lin, H., Li, T., He, W., Li, Y., Yu Zhang, Y., Zhu, Y. & Zijian Guo, Z. (2009). Inorg. Chim. Acta, 362, 967–974.
  10. Liu, H.-Y., Wei, G.-H. & Ma, J.-F. (2008). Acta Cryst. E64, o126.
  11. Llobet, A., Reibenspies, J. & Martell, A. E. (1994). Inorg. Chem.33, 5946–5951.
  12. Lu, Q., Motekaitis, R. J., Reibenspies, J. & Martell, A. E. (1995). Inorg. Chem.34, 4958–4964.
  13. Lu, Q., Riebenspies, J. H., Caroll, R. I., Martell, A. E. & Clearfield, A. (1998). Inorg. Chim. Acta, 270, 207–215.
  14. Nagarajan, S. B. & Ganem, B. (1987). J. Org. Chem.52, 5044–5046.
  15. Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.
  16. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  17. Ragunathan, K. G. & Schneider, H.-S. (1996). Angew. Chem. Int. Ed. Engl.35, 1219–1221.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Zhu, L.-G., Ellern, A. M. & Kostić, N. M. (2002). Acta Cryst. C58, o129–o130. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035648/ci2898sup1.cif

e-65-o2405-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035648/ci2898Isup2.hkl

e-65-o2405-Isup2.hkl (352.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES