Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(20):7647–7651. doi: 10.1073/pnas.85.20.7647

Peroxisomal lignoceroyl-CoA ligase deficiency in childhood adrenoleukodystrophy and adrenomyeloneuropathy.

O Lazo 1, M Contreras 1, M Hashmi 1, W Stanley 1, C Irazu 1, I Singh 1
PMCID: PMC282249  PMID: 3174658

Abstract

We previously reported that in childhood adrenoleukodystrophy (C-ALD) and adrenomyeloneuropathy (AMN), the peroxisomal beta-oxidation system for very long chain (greater than C22) fatty acids is defective. To further define the defect in these two forms of X chromosome-linked ALD, we examined the oxidation of [1-14C]lignoceric acid (n-tetracosanoic acid, C24:0) and [1-14C]lignoceroyl-CoA (substrates for the first and second steps of beta-oxidation, respectively). The oxidation rates of lignoceric acid in C-ALD and AMN were 43% and 36% of control values, respectively, whereas the oxidation rate of lignoceroyl-CoA was 109% (C-ALD) and 106% (AMN) of control values, respectively. On the other hand, the oxidation rates of palmitic acid (n-hexadecanoic acid) and palmitoyl-CoA in C-ALD and AMN were similar to the control values. These results suggest that lignoceroyl-CoA ligase activity may be impaired in C-ALD and AMN. To identify the specific enzymatic deficiency and its subcellular localization in C-ALD and AMN, we established a modified procedure for the subcellular fractionation of cultured skin fibroblasts. Determination of acyl-CoA ligase activities provided direct evidence that lignoceroyl-CoA ligase is deficient in peroxisomes while it is normal in mitochondrial and microsomes. Moreover, the normal oxidation of lignoceroyl-CoA as compared with the deficient oxidation of lignoceric acid in isolated peroxisomes also supports the conclusion that peroxisomal lignoceroyl-CoA ligase is impaired in both C-ALD and AMN. Palmitoyl-Coa ligase activity was found to be normal in peroxisomes as well as in mitochondria and microsomes. This normal peroxisomal palmitoyl-CoA ligase activity as compared with the deficient activity of lignoceroyl-CoA ligase in C-ALD and AMN suggests the presence of two separate acyl-CoA ligases for palmitic and lignoceric acids in peroxisomes. These data clearly demonstrate that the pathognomonic accumulation of very long chain fatty acids in C-ALD and AMN is due to a deficiency of peroxisomal very long chain (lignoceric acid) acyl-CoA ligase.

Full text

PDF
7647

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akanuma H., Kishimoto Y. Synthesis of ceramides and cerebrosides containing both alpha-hydroxy and nonhydroxy fatty acids from lignoceroyl-CoA by rat brain microsomes. J Biol Chem. 1979 Feb 25;254(4):1050–1060. [PubMed] [Google Scholar]
  2. Baudhuin P., Beaufay H., Rahman-Li Y., Sellinger O. Z., Wattiaux R., Jacques P., De Duve C. Tissue fractionation studies. 17. Intracellular distribution of monoamine oxidase, aspartate aminotransferase, alanine aminotransferase, D-amino acid oxidase and catalase in rat-liver tissue. Biochem J. 1964 Jul;92(1):179–184. doi: 10.1042/bj0920179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhushan A., Singh R. P., Singh I. Characterization of rat brain microsomal acyl-coenzyme A ligases: different enzymes for the synthesis of palmitoyl-coenzyme A and lignoceroyl-coenzyme A. Arch Biochem Biophys. 1986 Apr;246(1):374–380. doi: 10.1016/0003-9861(86)90482-0. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brown F. R., 3rd, McAdams A. J., Cummins J. W., Konkol R., Singh I., Moser A. B., Moser H. W. Cerebro-hepato-renal (Zellweger) syndrome and neonatal adrenoleukodystrophy: similarities in phenotype and accumulation of very long chain fatty acids. Johns Hopkins Med J. 1982 Dec;151(6):344–351. [PubMed] [Google Scholar]
  6. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  7. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  8. Fahl W. E., Lalwani N. D., Watanabe T., Goel S. K., Reddy J. K. DNA damage related to increased hydrogen peroxide generation by hypolipidemic drug-induced liver peroxisomes. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7827–7830. doi: 10.1073/pnas.81.24.7827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghosh M. K., Hajra A. K. A rapid method for the isolation of peroxisomes from rat liver. Anal Biochem. 1986 Nov 15;159(1):169–174. doi: 10.1016/0003-2697(86)90323-4. [DOI] [PubMed] [Google Scholar]
  10. Goldfischer S., Collins J., Rapin I., Coltoff-Schiller B., Chang C. H., Nigro M., Black V. H., Javitt N. B., Moser H. W., Lazarow P. B. Peroxisomal defects in neonatal-onset and X-linked adrenoleukodystrophies. Science. 1985 Jan 4;227(4682):67–70. doi: 10.1126/science.3964959. [DOI] [PubMed] [Google Scholar]
  11. Griffin J. W., Goren E., Schaumburg H., Engel W. K., Loriaux L. Adrenomyeloneuropathy: a probable variant of adrenoleukodystrophy. I. Clinical and endocrinologic aspects. Neurology. 1977 Dec;27(12):1107–1113. doi: 10.1212/wnl.27.12.1107. [DOI] [PubMed] [Google Scholar]
  12. Groot P. H., Scholte H. R., Hülsmann W. C. Fatty acid activation: specificity, localization, and function. Adv Lipid Res. 1976;14:75–126. doi: 10.1016/b978-0-12-024914-5.50009-7. [DOI] [PubMed] [Google Scholar]
  13. Hajra A. K., Wu D. Preparative isolation of peroxisomes from liver and kidney using metrizamide density gradient centrifugation in a vertical rotor. Anal Biochem. 1985 Jul;148(1):233–244. doi: 10.1016/0003-2697(85)90651-7. [DOI] [PubMed] [Google Scholar]
  14. Hashimoto T. Individual peroxisomal beta-oxidation enzymes. Ann N Y Acad Sci. 1982;386:5–12. doi: 10.1111/j.1749-6632.1982.tb21403.x. [DOI] [PubMed] [Google Scholar]
  15. Hashmi M., Stanley W., Singh I. Lignoceroyl-CoASH ligase: enzyme defect in fatty acid beta-oxidation system in X-linked childhood adrenoleukodystrophy. FEBS Lett. 1986 Feb 17;196(2):247–250. doi: 10.1016/0014-5793(86)80256-3. [DOI] [PubMed] [Google Scholar]
  16. Hoshi M., Kishimoto Y. Synthesis of cerebronic acid from lignoceric acid by rat brain preparation. Some properties and distribution of the -hydroxylation system. J Biol Chem. 1973 Jun 10;248(11):4123–4130. [PubMed] [Google Scholar]
  17. Igarashi M., Schaumburg H. H., Powers J., Kishmoto Y., Kolodny E., Suzuki K. Fatty acid abnormality in adrenoleukodystrophy. J Neurochem. 1976 Apr;26(4):851–860. doi: 10.1111/j.1471-4159.1976.tb04462.x. [DOI] [PubMed] [Google Scholar]
  18. Kelley R. I., Datta N. S., Dobyns W. B., Hajra A. K., Moser A. B., Noetzel M. J., Zackai E. H., Moser H. W. Neonatal adrenoleukodystrophy: new cases, biochemical studies, and differentiation from Zellweger and related peroxisomal polydystrophy syndromes. Am J Med Genet. 1986 Apr;23(4):869–901. doi: 10.1002/ajmg.1320230404. [DOI] [PubMed] [Google Scholar]
  19. Krisans S. K., Mortensen R. M., Lazarow P. B. Acyl-CoA synthetase in rat liver peroxisomes. Computer-assisted analysis of cell fractionation experiments. J Biol Chem. 1980 Oct 25;255(20):9599–9607. [PubMed] [Google Scholar]
  20. Miyazawa S., Hashimoto T., Yokota S. Identity of long-chain acyl-coenzyme A synthetase of microsomes, mitochondria, and peroxisomes in rat liver. J Biochem. 1985 Sep;98(3):723–733. doi: 10.1093/oxfordjournals.jbchem.a135330. [DOI] [PubMed] [Google Scholar]
  21. Moser H. W., Moser A. E., Singh I., O'Neill B. P. Adrenoleukodystrophy: survey of 303 cases: biochemistry, diagnosis, and therapy. Ann Neurol. 1984 Dec;16(6):628–641. doi: 10.1002/ana.410160603. [DOI] [PubMed] [Google Scholar]
  22. Moser H. W. Peroxisomal disorders. J Pediatr. 1986 Jan;108(1):89–91. doi: 10.1016/s0022-3476(86)80774-0. [DOI] [PubMed] [Google Scholar]
  23. Rizzo W. B., Avigan J., Chemke J., Schulman J. D. Adrenoleukodystrophy: very long-chain fatty acid metabolism in fibroblasts. Neurology. 1984 Feb;34(2):163–169. doi: 10.1212/wnl.34.2.163. [DOI] [PubMed] [Google Scholar]
  24. Santos M. J., Ojeda J. M., Garrido J., Leighton F. Peroxisomal organization in normal and cerebrohepatorenal (Zellweger) syndrome fibroblasts. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6556–6560. doi: 10.1073/pnas.82.19.6556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schaumburg H. H., Powers J. M., Raine C. S., Suzuki K., Richardson E. P., Jr Adrenoleukodystrophy. A clinical and pathological study of 17 cases. Arch Neurol. 1975 Sep;32(9):577–591. doi: 10.1001/archneur.1975.00490510033001. [DOI] [PubMed] [Google Scholar]
  26. Schutgens R. B., Heymans H. S., Wanders R. J., van den Bosch H., Tager J. M. Peroxisomal disorders: a newly recognised group of genetic diseases. Eur J Pediatr. 1986 Feb;144(5):430–440. doi: 10.1007/BF00441734. [DOI] [PubMed] [Google Scholar]
  27. Shindo Y., Hashimoto T. Acyl-Coenzyme A synthetase and fatty acid oxidation in rat liver peroxisomes. J Biochem. 1978 Nov;84(5):1177–1181. doi: 10.1093/oxfordjournals.jbchem.a132234. [DOI] [PubMed] [Google Scholar]
  28. Singh H., Derwas N., Poulos A. Beta-oxidation of very-long-chain fatty acids and their coenzyme A derivatives by human skin fibroblasts. Arch Biochem Biophys. 1987 May 1;254(2):526–533. doi: 10.1016/0003-9861(87)90133-0. [DOI] [PubMed] [Google Scholar]
  29. Singh H., Poulos A. A comparative study of stearic and lignoceric acid oxidation by human skin fibroblasts. Arch Biochem Biophys. 1986 Oct;250(1):171–179. doi: 10.1016/0003-9861(86)90714-9. [DOI] [PubMed] [Google Scholar]
  30. Singh I., Moser A. E., Goldfischer S., Moser H. W. Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebro-hepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4203–4207. doi: 10.1073/pnas.81.13.4203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Singh I., Moser A. E., Moser H. W., Kishimoto Y. Adrenoleukodystrophy: impaired oxidation of very long chain fatty acids in white blood cells, cultured skin fibroblasts, and amniocytes. Pediatr Res. 1984 Mar;18(3):286–290. doi: 10.1203/00006450-198403000-00016. [DOI] [PubMed] [Google Scholar]
  32. Singh I., Moser H. W., Moser A. B., Kishimoto Y. Adrenoleukodystrophy: impaired oxidation of long chain fatty acids in cultured skin fibroblasts an adrenal cortex. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1223–1229. doi: 10.1016/s0006-291x(81)80142-8. [DOI] [PubMed] [Google Scholar]
  33. Singh I., Singh R., Bhushan A., Singh A. K. Lignoceroyl-CoA ligase activity in rat brain microsomal fraction: topographical localization and effect of detergents and alpha-cyclodextrin. Arch Biochem Biophys. 1985 Jan;236(1):418–426. doi: 10.1016/0003-9861(85)90642-3. [DOI] [PubMed] [Google Scholar]
  34. Tsuji S., Sano-Kawamura T., Ariga T., Miyatake T. Metabolism of [17,18-3H2]hexacosanoic acid and [15,16-3H2]lignoceric acid in cultured skin fibroblasts from patients with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). J Neurol Sci. 1985 Dec;71(2-3):359–367. doi: 10.1016/0022-510x(85)90074-7. [DOI] [PubMed] [Google Scholar]
  35. Völkl A., Fahimi H. D. Isolation and characterization of peroxisomes from the liver of normal untreated rats. Eur J Biochem. 1985 Jun 3;149(2):257–265. doi: 10.1111/j.1432-1033.1985.tb08920.x. [DOI] [PubMed] [Google Scholar]
  36. Wanders R. J., van Roermund C. W., van Wijland M. J., Nijenhuis A. A., Tromp A., Schutgens R. B., Brouwer-Kelder E. M., Schram A. W., Tager J. M., van den Bosch H. X-linked adrenoleukodystrophy: defective peroxisomal oxidation of very long chain fatty acids but not of very long chain fatty acyl-CoA esters. Clin Chim Acta. 1987 Jun 15;165(2-3):321–329. doi: 10.1016/0009-8981(87)90177-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES