Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Oct;85(20):7680–7684. doi: 10.1073/pnas.85.20.7680

Pst I restriction fragment length polymorphism of human placental alkaline phosphatase gene: Mendelian segregation and localization of mutation site in the gene.

L Tsavaler 1, R C Penhallow 1, H H Sussman 1
PMCID: PMC282256  PMID: 2902636

Abstract

The pattern of inheritance of a Pst I restriction fragment length polymorphism (RFLP) of the human placental alkaline phosphatase gene was studied in nine nuclear families by Southern blot hybridization analysis of genomic DNA. The dimorphic RFLP is defined by the presence of allelic fragments 1.0 kilobase and 0.8 kilobase long. The results of this study show that the two alleles of the PstI RFLP of the placental alkaline phosphatase gene segregate as codominant traits according to Mendelian expectations. For a polymorphism to be useful as a genetic marker the probability that an offspring is informative (PIC) must be at least 0.15. The allelic frequency of the 1.0-kilobase allele is 0.21, which correlates to a probability that an offspring is informative of 0.275 and is indicative of a useful polymorphism. By using probes derived from different regions of the placental alkaline phosphatase cDNA, the mutated Pst I site causing the RFLP was located in the penultimate intron 2497 base pairs downstream from the transcriptional initiation site.

Full text

PDF
7680

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  2. Griffin C. A., Smith M., Henthorn P. S., Harris H., Weiss M. J., Raducha M., Emanuel B. S. Human placental and intestinal alkaline phosphatase genes map to 2q34-q37. Am J Hum Genet. 1987 Dec;41(6):1025–1034. [PMC free article] [PubMed] [Google Scholar]
  3. Henthorn P. S., Knoll B. J., Raducha M., Rothblum K. N., Slaughter C., Weiss M., Lafferty M. A., Fischer T., Harris H. Products of two common alleles at the locus for human placental alkaline phosphatase differ by seven amino acids. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5597–5601. doi: 10.1073/pnas.83.15.5597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Henthorn P. S., Raducha M., Edwards Y. H., Weiss M. J., Slaughter C., Lafferty M. A., Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1234–1238. doi: 10.1073/pnas.84.5.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kam W., Clauser E., Kim Y. S., Kan Y. W., Rutter W. J. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8715–8719. doi: 10.1073/pnas.82.24.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knoll B. J., Rothblum K. N., Longley M. Nucleotide sequence of the human placental alkaline phosphatase gene. Evolution of the 5' flanking region by deletion/substitution. J Biol Chem. 1988 Aug 25;263(24):12020–12027. [PubMed] [Google Scholar]
  7. Martin D., Spurr N. K., Trowsdale J. RFLP of the human placental alkaline phosphatase gene (PLAP). Nucleic Acids Res. 1987 Nov 11;15(21):9104–9104. doi: 10.1093/nar/15.21.9104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Martin D., Tucker D. F., Gorman P., Sheer D., Spurr N. K., Trowsdale J. The human placental alkaline phosphatase gene and related sequences map to chromosome 2 band q37. Ann Hum Genet. 1987 May;51(Pt 2):145–152. doi: 10.1111/j.1469-1809.1987.tb01056.x. [DOI] [PubMed] [Google Scholar]
  9. Migone N., Feder J., Cann H., van West B., Hwang J., Takahashi N., Honjo T., Piazza A., Cavalli-Sforza L. L. Multiple DNA fragment polymorphisms associated with immunoglobulin mu chain switch-like regions in man. Proc Natl Acad Sci U S A. 1983 Jan;80(2):467–471. doi: 10.1073/pnas.80.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Millán J. L., Manes T. Seminoma-derived Nagao isozyme is encoded by a germ-cell alkaline phosphatase gene. Proc Natl Acad Sci U S A. 1988 May;85(9):3024–3028. doi: 10.1073/pnas.85.9.3024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Millán J. L. Molecular cloning and sequence analysis of human placental alkaline phosphatase. J Biol Chem. 1986 Mar 5;261(7):3112–3115. [PubMed] [Google Scholar]
  12. Skolnick M. H., White R. Strategies for detecting and characterizing restriction fragment length polymorphisms (RFLP's). Cytogenet Cell Genet. 1982;32(1-4):58–67. doi: 10.1159/000131687. [DOI] [PubMed] [Google Scholar]
  13. Tsavaler L., Penhallow R. C., Kam W., Sussman H. H. Pst I restriction fragment length polymorphism of the human placental alkaline phosphatase gene in normal placentae and tumors. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4529–4532. doi: 10.1073/pnas.84.13.4529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Weiss M. J., Henthorn P. S., Lafferty M. A., Slaughter C., Raducha M., Harris H. Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci U S A. 1986 Oct;83(19):7182–7186. doi: 10.1073/pnas.83.19.7182. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES