Abstract
Single amino acid substitutions at the rim of the receptor binding site of the hemagglutinin molecule of swine influenza virus markedly influence the replicative capacity of the virus in chicken embryos, Madin-Darby canine kidney cells (MDCK), and swine as well as its antigenic phenotype. Mutants of low-yield (L) phenotype replicate poorly in chicken embryos and produce small plaques in MDCK cells but are highly infective for swine. Such mutants have lysine at position 153 and glycine at position 155 of the hemagglutinin (residues 156 and 158 in the H3 model). High-yield (H) mutants have the converse replicative characteristics and can be antigenically distinguished from L mutants (and from each other) based on their differential reactivity with two monoclonal antibodies, 9C8 and Sa-13. H mutants differ from L mutants in that the H mutants express glutamic acid at either position 153 or 155. L and H mutants act in an allelic fashion in effecting predictable one-step adaptation to different hosts. Selection for replication (e.g., high-yielding) phenotype results in concordant pleiotropic change in antigenic phenotype and in genotype. Conversely, immunoselection leads to change in replicative phenotype. Although the mechanism by which these mutations affect viral replication has not yet been defined, they may reflect differences in the affinity of each mutant for different host receptors.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baez M., Palese P., Kilbourne E. D. Gene composition of high-yielding influenza vaccine strains obtained by recombination. J Infect Dis. 1980 Mar;141(3):362–365. doi: 10.1093/infdis/141.3.362. [DOI] [PubMed] [Google Scholar]
- Both G. W., Shi C. H., Kilbourne E. D. Hemagglutinin of swine influenza virus: a single amino acid change pleiotropically affects viral antigenicity and replication. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6996–7000. doi: 10.1073/pnas.80.22.6996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Caton A. J., Brownlee G. G., Yewdell J. W., Gerhard W. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell. 1982 Dec;31(2 Pt 1):417–427. doi: 10.1016/0092-8674(82)90135-0. [DOI] [PubMed] [Google Scholar]
- Daniels P. S., Jeffries S., Yates P., Schild G. C., Rogers G. N., Paulson J. C., Wharton S. A., Douglas A. R., Skehel J. J., Wiley D. C. The receptor-binding and membrane-fusion properties of influenza virus variants selected using anti-haemagglutinin monoclonal antibodies. EMBO J. 1987 May;6(5):1459–1465. doi: 10.1002/j.1460-2075.1987.tb02387.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinshaw V. S., Webster R. G., Bean W. J., Downie J., Senne D. A. Swine influenza-like viruses in turkeys: potential source of virus for humans? Science. 1983 Apr 8;220(4593):206–208. doi: 10.1126/science.6298942. [DOI] [PubMed] [Google Scholar]
- Katz J. M., Naeve C. W., Webster R. G. Host cell-mediated variation in H3N2 influenza viruses. Virology. 1987 Feb;156(2):386–395. doi: 10.1016/0042-6822(87)90418-1. [DOI] [PubMed] [Google Scholar]
- Khan M. W., Bucher D. J., Koul A. K., Kalish G., Smith H., Kilbourne E. D. Detection of antibodies to influenza virus M protein by an enzyme-linked immunosorbent assay. J Clin Microbiol. 1982 Nov;16(5):813–820. doi: 10.1128/jcm.16.5.813-820.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilbourne E. D. Future influenza vaccines and the use of genetic recombinants. Bull World Health Organ. 1969;41(3):643–645. [PMC free article] [PubMed] [Google Scholar]
- Kilbourne E. D. Genetic dimorphism in influenza viruses: characterization of stably associated hemagglutinin mutants differing in antigenicity and biological properties. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6258–6262. doi: 10.1073/pnas.75.12.6258. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilbourne E. D., Gerhard W., Whitaker C. W. Monoclonal antibodies to the hemagglutinin Sa antigenic site of a/pr/8/34 influenza virus distinguish biologic mutants of swine influenza virus. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6399–6402. doi: 10.1073/pnas.80.20.6399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kilbourne E. D., McGregor S., Easterday B. C. Hemagglutinin mutants of swine influenza virus differing in replication characteristics in their natural host. Infect Immun. 1979 Oct;26(1):197–201. doi: 10.1128/iai.26.1.197-201.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saitou N., Nei M. Polymorphism and evolution of influenza A virus genes. Mol Biol Evol. 1986 Jan;3(1):57–74. doi: 10.1093/oxfordjournals.molbev.a040381. [DOI] [PubMed] [Google Scholar]
- Skehel J. J., Brown E., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wrigley N. G., Wiley D. C. Studies with monoclonal antibodies prepared against X-31 influenza virus haemagglutinin. Biochem Soc Trans. 1985 Feb;13(1):12–14. doi: 10.1042/bst0130012. [DOI] [PubMed] [Google Scholar]
- Wiley D. C., Skehel J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem. 1987;56:365–394. doi: 10.1146/annurev.bi.56.070187.002053. [DOI] [PubMed] [Google Scholar]
- Wiley D. C., Wilson I. A., Skehel J. J. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature. 1981 Jan 29;289(5796):373–378. doi: 10.1038/289373a0. [DOI] [PubMed] [Google Scholar]