Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Nov;85(21):7840–7843. doi: 10.1073/pnas.85.21.7840

Molecular diversity of glucose-6-phosphate dehydrogenase: rat enzyme structure identifies NH2-terminal segment, shows initiation from sites nonequivalent in different organisms, and establishes otherwise extensive sequence conservation.

J Jeffery 1, J Söderling-Barros 1, L A Murray 1, R J Hansen 1, B Szepesi 1, H Jörnvall 1
PMCID: PMC282292  PMID: 3141918

Abstract

The NH2-terminal region of rat liver glucose-6-phosphate dehydrogenase (EC 1.1.1.49) is shown to differ radically from a reported amino acid sequence for the fruit fly enzyme and from one for the human enzyme. The results indicate considerable differences in the translational start point. However, a close relationship with another reported sequence for the human enzyme is established, now showing agreement between an indirectly deduced and a directly analyzed NH2-terminal structure of this enzyme type. The results provide evidence of one structural motif common to mammalian species but also suggest that genetic inconstancy 5' to, or at the start of, the region coding for the enzyme protein could be a source of intra- and interspecies diversity. This is of interest in relation to the large number of genetic variants of human glucose-6-phosphate dehydrogenase.

Full text

PDF
7840

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ammon H. L., Murphy K. C., Bhattacharjee S. K., Szepesi B., Hansen R. J. Preliminary crystallographic study of glucose-6-phosphate dehydrogenase from rat liver. J Mol Biol. 1983 Dec 5;171(2):233–236. doi: 10.1016/s0022-2836(83)80357-x. [DOI] [PubMed] [Google Scholar]
  2. Bhadbhade M. M., Adams M. J., Flynn T. G., Levy H. R. Sequence identity between a lysine-containing peptide from Leuconostoc mesenteroides glucose-6-phosphate dehydrogenase and an active site peptide from human erythrocyte glucose-6-phosphate dehydrogenase. FEBS Lett. 1987 Jan 26;211(2):243–246. doi: 10.1016/0014-5793(87)81445-x. [DOI] [PubMed] [Google Scholar]
  3. Chapman V. M., Shows T. B. Somatic cell genetic evidence for X-chromosome linkage of three enzymes in the mouse. Nature. 1976 Feb 26;259(5545):665–667. doi: 10.1038/259665a0. [DOI] [PubMed] [Google Scholar]
  4. Descalzi-Cancedda F., Caruso C., Romano M., di Prisco G., Camardella L. Amino acid sequence of the carboxy-terminal end of human erythrocyte glucose-6-phosphate dehydrogenase. Biochem Biophys Res Commun. 1984 Jan 13;118(1):332–338. doi: 10.1016/0006-291x(84)91105-7. [DOI] [PubMed] [Google Scholar]
  5. Fairwell T., Krutzsch H., Hempel J., Jeffery J., Jörnvall H. Acetyl-blocked N-terminal structures of sorbitol and aldehyde dehydrogenases. FEBS Lett. 1984 May 21;170(2):281–289. doi: 10.1016/0014-5793(84)81329-0. [DOI] [PubMed] [Google Scholar]
  6. Flinta C., Persson B., Jörnvall H., von Heijne G. Sequence determinants of cytosolic N-terminal protein processing. Eur J Biochem. 1986 Jan 2;154(1):193–196. doi: 10.1111/j.1432-1033.1986.tb09378.x. [DOI] [PubMed] [Google Scholar]
  7. Fouts D., Ganguly R., Gutierrez A. G., Lucchesi J. C., Manning J. E. Nucleotide sequence of the Drosophila glucose-6-phosphate dehydrogenase gene and comparison with the homologous human gene. Gene. 1988 Mar 31;63(2):261–275. doi: 10.1016/0378-1119(88)90530-6. [DOI] [PubMed] [Google Scholar]
  8. Hirono A., Beutler E. Molecular cloning and nucleotide sequence of cDNA for human glucose-6-phosphate dehydrogenase variant A(-). Proc Natl Acad Sci U S A. 1988 Jun;85(11):3951–3954. doi: 10.1073/pnas.85.11.3951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jeffery J., Cederlund E., Jörnvall H. Sorbitol dehydrogenase. The primary structure of the sheep-liver enzyme. Eur J Biochem. 1984 Apr 2;140(1):7–16. doi: 10.1111/j.1432-1033.1984.tb08059.x. [DOI] [PubMed] [Google Scholar]
  10. Jeffery J., Hobbs L., Jörnvall H. Glucose-6-phosphate dehydrogenase from Saccharomyces cerevisiae: characterization of a reactive lysine residue labeled with acetylsalicylic acid. Biochemistry. 1985 Jan 29;24(3):666–671. doi: 10.1021/bi00324a019. [DOI] [PubMed] [Google Scholar]
  11. Kaiser R., Holmquist B., Hempel J., Vallee B. L., Jörnvall H. Class III human liver alcohol dehydrogenase: a novel structural type equidistantly related to the class I and class II enzymes. Biochemistry. 1988 Feb 23;27(4):1132–1140. doi: 10.1021/bi00404a009. [DOI] [PubMed] [Google Scholar]
  12. Levy H. R., Christoff M. A critical appraisal of the effect of oxidized glutathione on hepatic glucose 6-phosphate dehydrogenase activity. Biochem J. 1983 Sep 15;214(3):959–965. doi: 10.1042/bj2140959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Luzzatto L., Battistuzzi G. Glucose-6-phosphate dehydrogenase. Adv Hum Genet. 1985;14:217-329, 386-8. doi: 10.1007/978-1-4615-9400-0_4. [DOI] [PubMed] [Google Scholar]
  14. Martini G., Toniolo D., Vulliamy T., Luzzatto L., Dono R., Viglietto G., Paonessa G., D'Urso M., Persico M. G. Structural analysis of the X-linked gene encoding human glucose 6-phosphate dehydrogenase. EMBO J. 1986 Aug;5(8):1849–1855. doi: 10.1002/j.1460-2075.1986.tb04436.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nogueira M., Garcia G., Mejuto C., Freire M. Regulation of the pentose phosphate cycle. Cofactor that controls the inhibition of glucose-6-phosphate dehydrogenase by NADPH in rat liver. Biochem J. 1986 Nov 1;239(3):553–558. doi: 10.1042/bj2390553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pai G. S., Sprenkle J. A., Do T. T., Mareni C. E., Migeon B. R. Localization of loci for hypoxanthine phosphoribosyltransferase and glucose-6-phosphate dehydrogenase and biochemical evidence of nonrandom X chromosome expression from studies of a human X-autosome translocation. Proc Natl Acad Sci U S A. 1980 May;77(5):2810–2813. doi: 10.1073/pnas.77.5.2810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Persico M. G., Viglietto G., Martini G., Toniolo D., Paonessa G., Moscatelli C., Dono R., Vulliamy T., Luzzatto L., D'Urso M. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones: primary structure of the protein and unusual 5' non-coding region. Nucleic Acids Res. 1986 Mar 25;14(6):2511–2522. doi: 10.1093/nar/14.6.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Persson B., Flinta C., von Heijne G., Jörnvall H. Structures of N-terminally acetylated proteins. Eur J Biochem. 1985 Nov 4;152(3):523–527. doi: 10.1111/j.1432-1033.1985.tb09227.x. [DOI] [PubMed] [Google Scholar]
  19. Takizawa T., Huang I. Y., Ikuta T., Yoshida A. Human glucose-6-phosphate dehydrogenase: primary structure and cDNA cloning. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4157–4161. doi: 10.1073/pnas.83.12.4157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vulliamy T. J., D'Urso M., Battistuzzi G., Estrada M., Foulkes N. S., Martini G., Calabro V., Poggi V., Giordano R., Town M. Diverse point mutations in the human glucose-6-phosphate dehydrogenase gene cause enzyme deficiency and mild or severe hemolytic anemia. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5171–5175. doi: 10.1073/pnas.85.14.5171. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES