Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Nov;85(21):8296–8300. doi: 10.1073/pnas.85.21.8296

The 43-kDa neuronal growth-associated protein (GAP-43) is present in plasma membranes of rat astrocytes.

L Vitković 1, H W Steisslinger 1, V J Aloyo 1, M Mersel 1
PMCID: PMC282416  PMID: 3054883

Abstract

One of the neuronal growth-associated proteins, GAP-43 (molecular mass, approximately 43 kDa; pI 4.3), is abundant in growth-cone membranes and corresponds to a major protein kinase C substrate, the 46-kDa phosphoprotein (pp46), of a growth-cone-enriched subcellular fraction. This protein has the following additional designations (depending on context): B-50 (phospholipid metabolism), F1 (synaptic plasticity), and p57 (calmodulin binding). We show that a protein with the same molecular mass and isoelectric point as GAP-43, which interacts with anti-GAP-43 antibodies on immunoblots, is present in the plasma membranes of cultured neonatal rat cortical astrocytes. Double-immunofluorescence labeling of cells with a serum against glial fibrillary acidic protein and anti-GAP-43 antibody was observed. Furthermore, astrocytic protein was phosphorylated in vitro by protein kinase C and comigrated in two-dimensional PAGE with GAP-43. The data indicate that GAP-43, heretofore believed to be neuron-specific, is present in at least one class of glial cells.

Full text

PDF
8296

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloyo V. J., Zwiers H., Gispen W. H. B-50 protein kinase and kinase C in rat brain. Prog Brain Res. 1982;56:303–315. doi: 10.1016/S0079-6123(08)63781-4. [DOI] [PubMed] [Google Scholar]
  2. Aronson N. N., Jr, Touster O. Isolation of rat liver plasma membrane fragments in isotonic sucrose. Methods Enzymol. 1974;31:90–102. doi: 10.1016/0076-6879(74)31009-9. [DOI] [PubMed] [Google Scholar]
  3. Benowitz L. I., Apostolides P. J., Perrone-Bizzozero N., Finklestein S. P., Zwiers H. Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J Neurosci. 1988 Jan;8(1):339–352. doi: 10.1523/JNEUROSCI.08-01-00339.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benowitz L. I., Perrone-Bizzozero N. I., Finklestein S. P. Molecular properties of the growth-associated protein GAP-43 (B-50). J Neurochem. 1987 May;48(5):1640–1647. doi: 10.1111/j.1471-4159.1987.tb05713.x. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Crane F. L., Löw H. NADH oxidation in liver and fat cell plasma membranes. FEBS Lett. 1976 Oct 1;68(2):153–156. doi: 10.1016/0014-5793(76)80425-5. [DOI] [PubMed] [Google Scholar]
  7. Ellis L., Wallis I., Abreu E., Pfenninger K. H. Nerve growth cones isolated from fetal rat brain. IV. Preparation of a membrane subfraction and identification of a membrane glycoprotein expressed on sprouting neurons. J Cell Biol. 1985 Nov;101(5 Pt 1):1977–1989. doi: 10.1083/jcb.101.5.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fischel S. V., Medzihradsky F. Assessment of membrane permeability in primary cultures of neurons and glia in response to osmotic perturbation. J Neurosci Res. 1985;13(3):369–380. doi: 10.1002/jnr.490130304. [DOI] [PubMed] [Google Scholar]
  9. Fowler C. J., Tipton K. F. Concentration dependence of the oxidation of tyramine by the two forms of rat liver mitochondrial monoamine oxidase. Biochem Pharmacol. 1981 Dec 15;30(24):3329–3332. doi: 10.1016/0006-2952(81)90607-9. [DOI] [PubMed] [Google Scholar]
  10. Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells. J Cell Biol. 1975 Feb;64(2):438–460. doi: 10.1083/jcb.64.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jacobson R. D., Virág I., Skene J. H. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci. 1986 Jun;6(6):1843–1855. doi: 10.1523/JNEUROSCI.06-06-01843.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karns L. R., Ng S. C., Freeman J. A., Fishman M. C. Cloning of complementary DNA for GAP-43, a neuronal growth-related protein. Science. 1987 May 1;236(4801):597–600. doi: 10.1126/science.2437653. [DOI] [PubMed] [Google Scholar]
  13. Meiri K. F., Pfenninger K. H., Willard M. B. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci U S A. 1986 May;83(10):3537–3541. doi: 10.1073/pnas.83.10.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mersel M., Malviya A. N., Hindelang C., Mandel P. Plasma membrane isolated from astrocytes in primary cultures. Its acceptor oxidoreductase properties. Biochim Biophys Acta. 1984 Nov 21;778(1):144–154. doi: 10.1016/0005-2736(84)90458-9. [DOI] [PubMed] [Google Scholar]
  15. Mersel M., Tholey G., Delaunoy J. P., Rebel G., Flory E., Mandel P. Isolement et caractérisation d'une nouvelle lignée d'astrocytes spontanément transformés du cerveau de rat. C R Acad Sci III. 1985;301(19):811–815. [PubMed] [Google Scholar]
  16. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  17. Neary J. T., Norenberg L. O., Norenberg M. D. Protein kinase C in primary astrocyte cultures: cytoplasmic localization and translocation by a phorbol ester. J Neurochem. 1988 Apr;50(4):1179–1184. doi: 10.1111/j.1471-4159.1988.tb10590.x. [DOI] [PubMed] [Google Scholar]
  18. Neve R. L., Perrone-Bizzozero N. I., Finklestein S., Zwiers H., Bird E., Kurnit D. M., Benowitz L. I. The neuronal growth-associated protein GAP-43 (B-50, F1): neuronal specificity, developmental regulation and regional distribution of the human and rat mRNAs. Brain Res. 1987 Jul;388(2):177–183. doi: 10.1016/s0006-8993(87)80012-4. [DOI] [PubMed] [Google Scholar]
  19. Noble M., Fok-Seang J., Cohen J. Glia are a unique substrate for the in vitro growth of central nervous system neurons. J Neurosci. 1984 Jul;4(7):1892–1903. doi: 10.1523/JNEUROSCI.04-07-01892.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  21. Perrone-Bizzozero N. I., Finklestein S. P., Benowitz L. I. Synthesis of a growth-associated protein by embryonic rat cerebrocortical neurons in vitro. J Neurosci. 1986 Dec;6(12):3721–3730. doi: 10.1523/JNEUROSCI.06-12-03721.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pfenninger K. H., Ellis L., Johnson M. P., Friedman L. B., Somlo S. Nerve growth cones isolated from fetal rat brain: subcellular fractionation and characterization. Cell. 1983 Dec;35(2 Pt 1):573–584. doi: 10.1016/0092-8674(83)90191-5. [DOI] [PubMed] [Google Scholar]
  23. Sensenbrenner M., Devilliers G., Bock E., Porte A. Biochemical and ultrastructural studies of cultured rat astroglial cells: effect of brain extract and dibutyryl cyclic AMP on glial fibrillary acidic protein and glial filaments. Differentiation. 1980;17(1):51–61. doi: 10.1111/j.1432-0436.1980.tb01081.x. [DOI] [PubMed] [Google Scholar]
  24. Skene J. H., Jacobson R. D., Snipes G. J., McGuire C. B., Norden J. J., Freeman J. A. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science. 1986 Aug 15;233(4765):783–786. doi: 10.1126/science.3738509. [DOI] [PubMed] [Google Scholar]
  25. Skene J. H., Willard M. Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol. 1981 Apr;89(1):86–95. doi: 10.1083/jcb.89.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Steisslinger H. W., Aloyo V. J., Vitković L. Characterization of two plasma membrane proteins abundant in rat brain. Brain Res. 1987 Jul 14;415(2):375–379. doi: 10.1016/0006-8993(87)90224-1. [DOI] [PubMed] [Google Scholar]
  27. Temple S., Raff M. C. Differentiation of a bipotential glial progenitor cell in a single cell microculture. Nature. 1985 Jan 17;313(5999):223–225. doi: 10.1038/313223a0. [DOI] [PubMed] [Google Scholar]
  28. Zwiers H., Verhaagen J., van Dongen C. J., de Graan P. N., Gispen W. H. Resolution of rat brain synaptic phosphoprotein B-50 into multiple forms by two-dimensional electrophoresis: evidence for multisite phosphorylation. J Neurochem. 1985 Apr;44(4):1083–1090. doi: 10.1111/j.1471-4159.1985.tb08728.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES