Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Nov;85(22):8400–8404. doi: 10.1073/pnas.85.22.8400

Negative and positive site-site interactions, and their modulation by pH, insulin analogs, and monoclonal antibodies, are preserved in the purified insulin receptor.

C C Wang 1, I D Goldfine 1, Y Fujita-Yamaguchi 1, H G Gattner 1, D Brandenburg 1, P De Meyts 1
PMCID: PMC282465  PMID: 3054887

Abstract

The kinetic properties of the insulin receptor were studied in solution after its purification to homogeneity. Dissociation of 125I-labeled insulin at a 1:50 dilution was not first order; unlabeled insulin at physiological concentrations accelerated the dissociation rate with a maximal effect at approximately 17 nM. At higher concentrations, the unlabeled insulin slowed the dissociation rate. Maximal acceleration was seen at pH 8.0. The ability to accelerate the dissociation rate was diminished with [LeuB24]insulin and suppressed with desoctapeptide, [LeuB25], [LeuB24,B25], desalanine-desasparagine, and desheptapeptide insulins, all of which slowed the dissociation at high concentrations. Monoclonal antibodies to the insulin receptor alpha subunit (MA-5, MA-10, MA-20, and MA-51) all competed for insulin binding to the purified receptor. MA-10 and MA-51 accelerated the dissociation of 125I-labeled insulin, while MA-5 and MA-20 slowed the off rate. Thus, all the aspects of both negatively and positively cooperative site-site interactions previously described in whole cells are present in solubilized purified receptors, demonstrating that these interactions represent intrinsic properties of the receptor molecule, most likely as a result of ligand-induced conformational changes.

Full text

PDF
8400

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baron M. D., Sönksen P. H. Characterization of two insulin-binding components of rat-liver plasma membranes. Biosci Rep. 1982 Oct;2(10):785–793. doi: 10.1007/BF01114938. [DOI] [PubMed] [Google Scholar]
  2. Böni-Schnetzler M., Scott W., Waugh S. M., DiBella E., Pilch P. F. The insulin receptor. Structural basis for high affinity ligand binding. J Biol Chem. 1987 Jun 15;262(17):8395–8401. [PubMed] [Google Scholar]
  3. Caro J. F., Raju S. M., Sinha M. K., Goldfine I. D., Dohm G. L. Heterogeneity of human liver, muscle, and adipose tissue insulin receptor. Biochem Biophys Res Commun. 1988 Feb 29;151(1):123–129. doi: 10.1016/0006-291x(88)90567-0. [DOI] [PubMed] [Google Scholar]
  4. Carpenter F. H. Relationship of structure to biological activity of insulin as revealed by degradative studies. Am J Med. 1966 May;40(5):750–758. doi: 10.1016/0002-9343(66)90156-2. [DOI] [PubMed] [Google Scholar]
  5. Corin R. E., Donner D. B. Insulin receptors convert to a higher affinity state subsequent to hormone binding. A two-state model for the insulin receptor. J Biol Chem. 1982 Jan 10;257(1):104–110. [PubMed] [Google Scholar]
  6. De Meyts P., Roth J. Cooperativity in ligand binding: a new graphic analysis. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1118–1126. doi: 10.1016/0006-291x(75)90473-8. [DOI] [PubMed] [Google Scholar]
  7. De Meyts P., Van Obberghen E., Roth J. Mapping of the residues responsible for the negative cooperativity of the receptor-binding region of insulin. Nature. 1978 Jun 15;273(5663):504–509. doi: 10.1038/273504a0. [DOI] [PubMed] [Google Scholar]
  8. DeMeyts P., Bainco A. R., Roth J. Site-site interactions among insulin receptors. Characterization of the negative cooperativity. J Biol Chem. 1976 Apr 10;251(7):1877–1888. [PubMed] [Google Scholar]
  9. Deger A., Krämer H., Rapp R., Koch R., Weber U. The nonclassical insulin binding of insulin receptors from rat liver is due to the presence of two interacting alpha-subunits in the receptor complex. Biochem Biophys Res Commun. 1986 Mar 13;135(2):458–464. doi: 10.1016/0006-291x(86)90016-1. [DOI] [PubMed] [Google Scholar]
  10. Ebina Y., Ellis L., Jarnagin K., Edery M., Graf L., Clauser E., Ou J. H., Masiarz F., Kan Y. W., Goldfine I. D. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signalling. Cell. 1985 Apr;40(4):747–758. doi: 10.1016/0092-8674(85)90334-4. [DOI] [PubMed] [Google Scholar]
  11. Forsayeth J. R., Caro J. F., Sinha M. K., Maddux B. A., Goldfine I. D. Monoclonal antibodies to the human insulin receptor that activate glucose transport but not insulin receptor kinase activity. Proc Natl Acad Sci U S A. 1987 May;84(10):3448–3451. doi: 10.1073/pnas.84.10.3448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Forsayeth J. R., Montemurro A., Maddux B. A., DePirro R., Goldfine I. D. Effect of monoclonal antibodies on human insulin receptor autophosphorylation, negative cooperativity, and down-regulation. J Biol Chem. 1987 Mar 25;262(9):4134–4140. [PubMed] [Google Scholar]
  13. Fujita-Yamaguchi Y., Choi S., Sakamoto Y., Itakura K. Purification of insulin receptor with full binding activity. J Biol Chem. 1983 Apr 25;258(8):5045–5049. [PubMed] [Google Scholar]
  14. Fujita-Yamaguchi Y., Harmon J. T. A monomer-dimer model explains the results of radiation inactivation: binding characteristics of insulin receptor purified from human placenta. Biochemistry. 1988 May 3;27(9):3252–3260. doi: 10.1021/bi00409a020. [DOI] [PubMed] [Google Scholar]
  15. Gammeltoft S. Insulin receptors: binding kinetics and structure-function relationship of insulin. Physiol Rev. 1984 Oct;64(4):1321–1378. doi: 10.1152/physrev.1984.64.4.1321. [DOI] [PubMed] [Google Scholar]
  16. Gattner H. G., Danho W., Behn C., Zahn H. The preparation of two mutant forms of human insulin, containing leucine in position B24 or B25, by enzyme-assisted synthesis. Hoppe Seylers Z Physiol Chem. 1980 Jul;361(7):1135–1138. [PubMed] [Google Scholar]
  17. Ginsberg B. H., Kahn C. R., Roth J., De Meyts P. Insulin-induced dissociation of its receptor into subunits: possible molecular concomitant of negative cooperativity. Biochem Biophys Res Commun. 1976 Dec 20;73(4):1068–1074. doi: 10.1016/0006-291x(76)90232-1. [DOI] [PubMed] [Google Scholar]
  18. Gu J. L., Goldfine I. D., Forsayeth J. R., De Meyts P. Reversal of insulin-induced negative cooperativity by monoclonal antibodies that stabilize the slowly dissociating ("Ksuper") state of the insulin receptor. Biochem Biophys Res Commun. 1988 Jan 29;150(2):694–701. doi: 10.1016/0006-291x(88)90447-0. [DOI] [PubMed] [Google Scholar]
  19. Harrison L. C., Billington T., East I. J., Nichols R. J., Clark S. The effect of solubilization on the properties of the insulin receptor of human placental membranes. Endocrinology. 1978 May;102(5):1485–1495. doi: 10.1210/endo-102-5-1485. [DOI] [PubMed] [Google Scholar]
  20. Ilondo M. M., Courtoy P. J., Geiger D., Carpentier J. L., Rousseau G. G., De Meyts P. Intracellular potassium depletion in IM-9 lymphocytes suppresses the slowly dissociating component of human growth hormone binding and the down-regulation of its receptors but does not affect insulin receptors. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6460–6464. doi: 10.1073/pnas.83.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jonczyk A., Keefer L. M., Naithani V. K., Gattner H. G., De Meyts P., Zahn H. Preparation and biological properties of [LeuB24, LeuB25]human insulin. Hoppe Seylers Z Physiol Chem. 1981 May;362(5):557–561. [PubMed] [Google Scholar]
  22. Kasuga M., Fujita-Yamaguchi Y., Blithe D. L., Kahn C. R. Tyrosine-specific protein kinase activity is associated with the purified insulin receptor. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2137–2141. doi: 10.1073/pnas.80.8.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Keefer L. M., Piron M. A., De Meyts P., Gattner H. G., Diaconescu C., Saunders D., Brandenburg D. Impaired negative cooperativity of the semisynthetic analogues human [LeuB24]- and [LeuB25]-insulins. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1229–1236. doi: 10.1016/0006-291x(81)91955-0. [DOI] [PubMed] [Google Scholar]
  24. O'Brien R. M., Soos M. A., Siddle K. Monoclonal antibodies to the insulin receptor stimulate the intrinsic tyrosine kinase activity by cross-linking receptor molecules. EMBO J. 1987 Dec 20;6(13):4003–4010. doi: 10.1002/j.1460-2075.1987.tb02743.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Petruzzelli L., Herrera R., Rosen O. M. Insulin receptor is an insulin-dependent tyrosine protein kinase: copurification of insulin-binding activity and protein kinase activity to homogeneity from human placenta. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3327–3331. doi: 10.1073/pnas.81.11.3327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pollet R. J., Standaert M. L., Haase B. A. Insulin binding to the human lymphocyte receptor. Evaluation of the negative cooperativity model. J Biol Chem. 1977 Aug 25;252(16):5828–5834. [PubMed] [Google Scholar]
  27. Roth R. A., Cassell D. J., Wong K. Y., Maddux B. A., Goldfine I. D. Monoclonal antibodies to the human insulin receptor block insulin binding and inhibit insulin action. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7312–7316. doi: 10.1073/pnas.79.23.7312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Siddle K., Soos M. A., O'Brien R. M., Ganderton R. H., Taylor R. Monoclonal antibodies as probes of the structure and function of insulin receptors. Biochem Soc Trans. 1987 Feb;15(1):47–51. doi: 10.1042/bst0150047. [DOI] [PubMed] [Google Scholar]
  29. Soos M. A., Siddle K., Baron M. D., Heward J. M., Luzio J. P., Bellatin J., Lennox E. S. Monoclonal antibodies reacting with multiple epitopes on the human insulin receptor. Biochem J. 1986 Apr 1;235(1):199–208. doi: 10.1042/bj2350199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sweet L. J., Morrison B. D., Pessin J. E. Isolation of functional alpha beta heterodimers from the purified human placental alpha 2 beta 2 heterotetrameric insulin receptor complex. A structural basis for insulin binding heterogeneity. J Biol Chem. 1987 May 25;262(15):6939–6942. [PubMed] [Google Scholar]
  31. Taylor R., Soos M. A., Wells A., Argyraki M., Siddle K. Insulin-like and insulin-inhibitory effects of monoclonal antibodies for different epitopes on the human insulin receptor. Biochem J. 1987 Feb 15;242(1):123–129. doi: 10.1042/bj2420123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taylor S. I., Leventhal S. Defect in cooperativity in insulin receptors from a patient with a congenital form of extreme insulin resistance. J Clin Invest. 1983 Jun;71(6):1676–1685. doi: 10.1172/JCI110922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ullrich A., Bell J. R., Chen E. Y., Herrera R., Petruzzelli L. M., Dull T. J., Gray A., Coussens L., Liao Y. C., Tsubokawa M. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. 1985 Feb 28-Mar 6Nature. 313(6005):756–761. doi: 10.1038/313756a0. [DOI] [PubMed] [Google Scholar]
  34. Wheeler F. B., Santora A. C., 2nd, Elsas L. J., 2nd Evidence supporting a two-receptor model for insulin binding by cultured embryonic heart cells. Endocrinology. 1980 Jul;107(1):195–207. doi: 10.1210/endo-107-1-195. [DOI] [PubMed] [Google Scholar]
  35. de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES