Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Nov;85(22):8449–8453. doi: 10.1073/pnas.85.22.8449

Amine cations promote concurrent conversion of prohistidine decarboxylase from Lactobacillus 30a to active enzyme and a modified proenzyme.

P D van Poelje 1, E E Snell 1
PMCID: PMC282475  PMID: 3250558

Abstract

Activation of prohistidine decarboxylase (pi 6) from Lactobacillus 30a proceeds by an intramolecular, pH- and monovalent cation-dependent reaction in which its constituent pi chains are cleaved nonhydrolytically between Ser-81 and Ser-82 with loss of NH3 and conversion of Ser-82 to the pyruvoyl residue of active histidine decarboxylase (alpha beta)6. Amines with pKa values more than 7.0 substitute for K+ or NH4+ in the activation of prohistidine decarboxylase, but they also catalyze its inactivation in a competing reaction, pi 6----pi'6. Sequence analysis of the appropriate tryptic peptide from amine-inactivated prohistidine decarboxylase established that inactivation results from conversion of Ser-82 of the pi chain to an aminoacrylate residue. The inactivated proenzyme (pi'6) does not form histidine decarboxylase; this fact eliminates one of two postulated mechanisms of activation and, thus, favors activation by beta-elimination of the acyl group of an intermediate ester formed between Ser-81 and Ser-82. L-Histidine is bound by the proenzyme (Kd = 1.7 x 10(-4) M) and is an effective activator; one binding site is present per pi subunit. K+, NH4+, and Na+ competitively inhibit (Ki values = 2.8-4.4 x 10(-3) M) activation by histidine. The data suggest the presence of two classes of monovalent cation binding sites on prohistidine decarboxylase: one (near Ser-82) is readily saturable and one is unsaturable even by 2.4 M K+.

Full text

PDF
8449

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang G. W., Snell E. E. Histidine decarboxylase of Lactobacillus 30a. II. Purification, substrate specificity, and stereospecificity. Biochemistry. 1968 Jun;7(6):2005–2012. doi: 10.1021/bi00846a001. [DOI] [PubMed] [Google Scholar]
  2. Chang J. Y. The destruction of serine and threonine thiohydantoins during the sequence determination of peptides by 4-N,N-dimethylaminoazobenzene 4'-isothiocyanate. Biochim Biophys Acta. 1979 May 23;578(1):175–187. doi: 10.1016/0005-2795(79)90125-9. [DOI] [PubMed] [Google Scholar]
  3. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  4. GROSS E., WITKOP B. Nonenzymatic cleavage of peptide bonds: the methionine residues in bovine pancreatic ribonuclease. J Biol Chem. 1962 Jun;237:1856–1860. [PubMed] [Google Scholar]
  5. Huynh Q. K., Recsei P. A., Vaaler G. L., Snell E. E. Histidine decarboxylase of Lactobacillus 30a. Sequences of the overlapping peptides, the complete alpha chain, and prohistidine decarboxylase. J Biol Chem. 1984 Mar 10;259(5):2833–2839. [PubMed] [Google Scholar]
  6. Ichiyama A., Nakamura S., Nishizuka Y., Hayaishi O. Enzymic studies on the biosynthesis of serotonin in mammalian brain. J Biol Chem. 1970 Apr 10;245(7):1699–1709. [PubMed] [Google Scholar]
  7. KOEPSELL H. J., SHARPE E. S. Micro-determination of pyruvic and alpha-keto-glutaric acids. Arch Biochem Biophys. 1952 Jul;38:443–449. doi: 10.1016/0003-9861(52)90050-7. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  10. Lever J. E. Quantitative assay of the binding of small molecules to protein: comparison of dialysis and membrane filter assays. Anal Biochem. 1972 Nov;50(1):73–83. doi: 10.1016/0003-2697(72)90487-3. [DOI] [PubMed] [Google Scholar]
  11. Recsei P. A., Huynh Q. K., Snell E. E. Conversion of prohistidine decarboxylase to histidine decarboxylase: peptide chain cleavage by nonhydrolytic serinolysis. Proc Natl Acad Sci U S A. 1983 Feb;80(4):973–977. doi: 10.1073/pnas.80.4.973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Recsei P. A., Snell E. E. Histidine decarboxylase of Lactobacillus 30a. VI. Mechanism of action and kinetic properties. Biochemistry. 1970 Mar 31;9(7):1492–1497. doi: 10.1021/bi00809a003. [DOI] [PubMed] [Google Scholar]
  13. Recsei P. A., Snell E. E. Prohistidine decarboxylase from Lactobacillus 30a. A new type of zymogen. Biochemistry. 1973 Jan 30;12(3):365–371. doi: 10.1021/bi00727a001. [DOI] [PubMed] [Google Scholar]
  14. Recsei P. A., Snell E. E. Pyruvoyl enzymes. Annu Rev Biochem. 1984;53:357–387. doi: 10.1146/annurev.bi.53.070184.002041. [DOI] [PubMed] [Google Scholar]
  15. Recsei P. A., Snell E. E. Pyruvoyl-dependent histidine decarboxylases. Mechanism of cleavage of the proenzyme from Lactobacillus buchneri. J Biol Chem. 1985 Mar 10;260(5):2804–2806. [PubMed] [Google Scholar]
  16. Riley W. D., Snell E. E. Histidine decarboxylase of Lactobacillus 30a. V. Origin of enzyme-bound pyruvate and separation of nonidentical subunits. Biochemistry. 1970 Mar 31;9(7):1485–1491. doi: 10.1021/bi00809a002. [DOI] [PubMed] [Google Scholar]
  17. Rosenbusch J. P., Weber K. Subunit structure of aspartate transcarbamylase from Escherichia coli. J Biol Chem. 1971 Mar 25;246(6):1644–1657. [PubMed] [Google Scholar]
  18. Suelter C. H. Enzymes activated by monovalent cations. Science. 1970 May 15;168(3933):789–795. doi: 10.1126/science.168.3933.789. [DOI] [PubMed] [Google Scholar]
  19. Tabor C. W., Tabor H. The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase. J Biol Chem. 1987 Nov 25;262(33):16037–16040. [PubMed] [Google Scholar]
  20. Vanderslice P., Copeland W. C., Robertus J. D. Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase from Lactobacillus 30a. J Biol Chem. 1986 Nov 15;261(32):15186–15191. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES