Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Nov;85(22):8603–8607. doi: 10.1073/pnas.85.22.8603

Immunobiologic differences between normal and leukemic human B-cell precursors.

F M Uckun 1, J A Ledbetter 1
PMCID: PMC282507  PMID: 2460871

Abstract

The early stages of normal human B-cell differentiation were studied by flow cytometry and cell sorting based on expression of CD10 (CALLA) and CD19 antigens in fetal liver. Both CD10+ CD19+ and CD10+ CD19- precursor populations proliferated in vitro to form B-cell precursor colonies under stimulation from low molecular weight B-cell growth factor (L-BCGF) or recombinant interleukin 3 but did not respond to high molecular weight B-cell growth factor (H-BCGF). The colonies derived from the CD10+ CD19- fraction showed induction of CD19 expression in 10-50% of growing cells, suggesting that CD10 expression precedes CD19 expression in B-cell ontogeny. This hypothesis was corroborated by less-differentiated marker profiles of the progeny of CD10+ CD19- B-cell precursors as compared to CD10+ CD19+ B-cell precursors in BCGF-stimulated cultures and by higher percentages of CD10+CD19- versus CD10-CD19+ B-cell precursors. CD19 crosslinking on normal fetal liver or bone marrow B-cell precursors was associated with an increase in cytoplasmic calcium concentration, but was inhibitory for colony formation. Leukemic B-cell precursors from acute lymphoblastic leukemias (ALLs) differed from normal B-cell precursors in their in vitro proliferative responses, since (i) they responded not only to L-BCGF and rIL-3 but also to H-BCGF and (ii) their proliferation was stimulated rather than inhibited by CD19 crosslinking. A clonogenic leukemic counterpart for the CD10+CD19- normal B-cell precursor population does not exist among malignant cells from B-cell precursor ALL patients, suggesting that the CD19 receptor may be involved in leukemogenesis of human B-cell precursor ALL.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson K. C., Bates M. P., Slaughenhoupt B. L., Pinkus G. S., Schlossman S. F., Nadler L. M. Expression of human B cell-associated antigens on leukemias and lymphomas: a model of human B cell differentiation. Blood. 1984 Jun;63(6):1424–1433. [PubMed] [Google Scholar]
  2. Greaves M. F. Differentiation-linked leukemogenesis in lymphocytes. Science. 1986 Nov 7;234(4777):697–704. doi: 10.1126/science.3535067. [DOI] [PubMed] [Google Scholar]
  3. Hokland P., Nadler L. M., Griffin J. D., Schlossman S. F., Ritz J. Purification of common acute lymphoblastic leukemia antigen positive cells from normal human bone marrow. Blood. 1984 Sep;64(3):662–666. [PubMed] [Google Scholar]
  4. Hokland P., Rosenthal P., Griffin J. D., Nadler L. M., Daley J., Hokland M., Schlossman S. F., Ritz J. Purification and characterization of fetal hematopoietic cells that express the common acute lymphoblastic leukemia antigen (CALLA). J Exp Med. 1983 Jan 1;157(1):114–129. doi: 10.1084/jem.157.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Korsmeyer S. J., Hieter P. A., Ravetch J. V., Poplack D. G., Waldmann T. A., Leder P. Developmental hierarchy of immunoglobulin gene rearrangements in human leukemic pre-B-cells. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7096–7100. doi: 10.1073/pnas.78.11.7096. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ledbetter J. A., Rabinovitch P. S., June C. H., Song C. W., Clark E. A., Uckun F. M. Antigen-independent regulation of cytoplasmic calcium in B cells with a 12-kDa B-cell growth factor and anti-CD19. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1897–1901. doi: 10.1073/pnas.85.6.1897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Loken M. R., Shah V. O., Dattilio K. L., Civin C. I. Flow cytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood. 1987 Nov;70(5):1316–1324. [PubMed] [Google Scholar]
  8. Nadler L. M., Ritz J., Bates M. P., Park E. K., Anderson K. C., Sallan S. E., Schlossman S. F. Induction of human B cell antigens in non-T cell acute lymphoblastic leukemia. J Clin Invest. 1982 Aug;70(2):433–442. doi: 10.1172/JCI110633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rabinovitch P. S., June C. H., Grossmann A., Ledbetter J. A. Heterogeneity among T cells in intracellular free calcium responses after mitogen stimulation with PHA or anti-CD3. Simultaneous use of indo-1 and immunofluorescence with flow cytometry. J Immunol. 1986 Aug 1;137(3):952–961. [PubMed] [Google Scholar]
  10. Ryan D., Kossover S., Mitchell S., Frantz C., Hennessy L., Cohen H. Subpopulations of common acute lymphoblastic leukemia antigen-positive lymphoid cells in normal bone marrow identified by hematopoietic differentiation antigens. Blood. 1986 Aug;68(2):417–425. [PubMed] [Google Scholar]
  11. Stamenkovic I., Seed B. CD19, the earliest differentiation antigen of the B cell lineage, bears three extracellular immunoglobulin-like domains and an Epstein-Barr virus-related cytoplasmic tail. J Exp Med. 1988 Sep 1;168(3):1205–1210. doi: 10.1084/jem.168.3.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Uckun F. M., Fauci A. S., Heerema N. A., Song C. W., Mehta S. R., Gajl-Peczalska K., Chandan M., Ambrus J. L. B-cell growth factor receptor expression and B-cell growth factor response of leukemic B cell precursors and B lineage lymphoid progenitor cells. Blood. 1987 Oct;70(4):1020–1034. [PubMed] [Google Scholar]
  13. Uckun F. M., Gajl-Peczalska K. J., Kersey J. H., Houston L. L., Vallera D. A. Use of a novel colony assay to evaluate the cytotoxicity of an immunotoxin containing pokeweed antiviral protein against blast progenitor cells freshly obtained from patients with common B-lineage acute lymphoblastic leukemia. J Exp Med. 1986 Feb 1;163(2):347–368. doi: 10.1084/jem.163.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Uckun F. M., Gajl-Peczalska K., Meyers D. E., Ramsay N. C., Kersey J. H., Colvin M., Vallera D. A. Marrow purging in autologous bone marrow transplantation for T-lineage acute lymphoblastic leukemia: efficacy of ex vivo treatment with immunotoxins and 4-hydroperoxycyclophosphamide against fresh leukemic marrow progenitor cells. Blood. 1987 Jan;69(1):361–366. [PubMed] [Google Scholar]
  15. Uckun F. M., Jaszcz W., Ambrus J. L., Fauci A. S., Gajl-Peczalska K., Song C. W., Wick M. R., Myers D. E., Waddick K., Ledbetter J. A. Detailed studies on expression and function of CD19 surface determinant by using B43 monoclonal antibody and the clinical potential of anti-CD19 immunotoxins. Blood. 1988 Jan;71(1):13–29. [PubMed] [Google Scholar]
  16. Uckun F. M., Kersey J. H., Gajl-Peczalska K. J., Heerema N. A., Provisor A. J., Haag D., Gilchrist G., Song C. W., Arthur D. C., Roloff J. Heterogeneity of cultured leukemic lymphoid progenitor cells from B cell precursor acute lymphoblastic leukemia (ALL) patients. J Clin Invest. 1987 Sep;80(3):639–646. doi: 10.1172/JCI113116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Uckun F. M., Myers D. E., Ledbetter J. A., Swaim S. E., Gajl-Peczalska K. J., Vallera D. A. Use of colony assays and anti-T cell immunotoxins to elucidate the immunobiologic features of leukemic progenitor cells in T-lineage acute lymphoblastic leukemia. J Immunol. 1988 Mar 15;140(6):2103–2111. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES