Abstract
The performance of a cryogenic system that monitors the extracranial magnetic field simultaneously at 14 positions over the scalp has been evaluated to determine the accuracy with which neuronal activity can be located within the human brain. Initially, measurements were implemented on two model systems, a lucite sphere filled with saline and a model skull. With a magnetic field strength similar to that of a human brain, the measurement and analysis procedures demonstrated a position accuracy better than 3 mm, for a current dipole 3 cm beneath the surface. Subsequently, measurements of the magnetic field pattern appearing 100 ms after the onset of an auditory tone-burst stimulus were obtained in three human subjects. The location of the current dipole representing intracellular ionic current in active neurons of the brain was determined, with 3-mm accuracy, to be within the cortex forming the floor of the Sylvian fissure of the individual subjects, corresponding closely to the Heschl gyrus as determined from magnetic resonance images. With the sensors placed at appropriate positions, the locations of neuronal sources for different tone frequencies could be obtained without moving the recording instrument. Adaptation of activity in human auditory cortex was shown to reveal long-term features with a paradigm that compared response amplitudes for three tones randomly presented.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arthur D. L., Flynn E. R., Williamson S. J. Source localization of long-latency auditory evoked magnetic fields in human temporal cortex. Electroencephalogr Clin Neurophysiol Suppl. 1987;40:429–439. [PubMed] [Google Scholar]
- Barth D. S., Sutherling W., Broffman J., Beatty J. Magnetic localization of a dipolar current source implanted in a sphere and a human cranium. Electroencephalogr Clin Neurophysiol. 1986 Mar;63(3):260–273. doi: 10.1016/0013-4694(86)90094-5. [DOI] [PubMed] [Google Scholar]
- Barth D. S., Sutherling W., Engle J., Jr, Beatty J. Neuromagnetic evidence of spatially distributed sources underlying epileptiform spikes in the human brain. Science. 1984 Jan 20;223(4633):293–296. doi: 10.1126/science.6422552. [DOI] [PubMed] [Google Scholar]
- Costa Ribeiro P., Williamson S. J., Kaufman L. SQUID arrays for simultaneous magnetic measurements: calibration and source localization performance. IEEE Trans Biomed Eng. 1988 Jul;35(7):551–560. doi: 10.1109/10.4584. [DOI] [PubMed] [Google Scholar]
- Elberling C., Bak C., Kofoed B., Lebech J., Saermark K. Magnetic auditory responses from the human brain. A preliminary report. Scand Audiol. 1980;9(3):185–190. doi: 10.3109/01050398009076353. [DOI] [PubMed] [Google Scholar]
- Farrell D. E., Tripp J. H., Norgren R., Teyler T. J. A study of the auditory evoked magnetic field of the human brain. Electroencephalogr Clin Neurophysiol. 1980 Jul;49(1-2):31–37. doi: 10.1016/0013-4694(80)90349-1. [DOI] [PubMed] [Google Scholar]
- Hansen J. S., Ko H. W., Fisher R. S., Litt B. Practical limits on the biomagnetic inverse process determined from in vitro measurements in spherical conducting volumes. Phys Med Biol. 1988 Jan;33(1):105–111. doi: 10.1088/0031-9155/33/1/010. [DOI] [PubMed] [Google Scholar]
- Hari R., Aittoniemi K., Järvinen M. L., Katila T., Varpula T. Auditory evoked transient and sustained magnetic fields of the human brain. Localization of neural generators. Exp Brain Res. 1980;40(2):237–240. doi: 10.1007/BF00237543. [DOI] [PubMed] [Google Scholar]
- Hari R., Ilmoniemi R. J. Cerebral magnetic fields. Crit Rev Biomed Eng. 1986;14(2):93–126. [PubMed] [Google Scholar]
- Ilmoniemi R., Hari R., Reinikainen K. A four-channel SQUID magnetometer for brain research. Electroencephalogr Clin Neurophysiol. 1984 Nov;58(5):467–473. doi: 10.1016/0013-4694(84)90143-3. [DOI] [PubMed] [Google Scholar]
- Meijs J. W., Bosch F. G., Peters M. J., Lopes da Silva F. H. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head. Electroencephalogr Clin Neurophysiol. 1987 Mar;66(3):286–298. doi: 10.1016/0013-4694(87)90078-2. [DOI] [PubMed] [Google Scholar]
- Ricci G. B., Romani G. L., Salustri C., Pizzella V., Torrioli G., Buonomo S., Peresson M., Modena I. Study of focal epilepsy by multichannel neuromagnetic measurements. Electroencephalogr Clin Neurophysiol. 1987 Apr;66(4):358–368. doi: 10.1016/0013-4694(87)90204-5. [DOI] [PubMed] [Google Scholar]
- Romani G. L., Williamson S. J., Kaufman L., Brenner D. Characterization of the human auditory cortex by the neuromagnetic method. Exp Brain Res. 1982;47(3):381–393. doi: 10.1007/BF00239356. [DOI] [PubMed] [Google Scholar]
- Romani G. L., Williamson S. J., Kaufman L. Tonotopic organization of the human auditory cortex. Science. 1982 Jun 18;216(4552):1339–1340. doi: 10.1126/science.7079770. [DOI] [PubMed] [Google Scholar]
- Sams M., Hämäläinen M., Antervo A., Kaukoranta E., Reinikainen K., Hari R. Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephalogr Clin Neurophysiol. 1985 Oct;61(4):254–266. doi: 10.1016/0013-4694(85)91092-2. [DOI] [PubMed] [Google Scholar]
- Sutherling W. W., Crandall P. H., Cahan L. D., Barth D. S. The magnetic field of epileptic spikes agrees with intracranial localizations in complex partial epilepsy. Neurology. 1988 May;38(5):778–786. doi: 10.1212/wnl.38.5.778. [DOI] [PubMed] [Google Scholar]
- Vaughan H. G., Jr, Ritter W. The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr Clin Neurophysiol. 1970 Apr;28(4):360–367. doi: 10.1016/0013-4694(70)90228-2. [DOI] [PubMed] [Google Scholar]





