Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Dec;85(23):9351–9355. doi: 10.1073/pnas.85.23.9351

Antiserum raised against residues 159-168 of the guanine nucleotide-binding protein Gi3-alpha reacts with ependymal cells and some neurons in the rat brain containing cholecystokinin- or cholecystokinin- and tyrosine 3-hydroxylase-like immunoreactivities.

R Cortés 1, T Hökfelt 1, M Schalling 1, M Goldstein 1, P Goldsmith 1, A Spiegel 1, C Unson 1, J Walsh 1
PMCID: PMC282737  PMID: 2904151

Abstract

Antibodies raised against a synthetic deca-peptide corresponding to a specific sequence of Gi3-alpha protein (an inhibitory guanine nucleotide-binding protein) were used to analyze Gi3-alpha-like immunoreactivity in brain sections from colchicine-treated rats by indirect immunofluorescence histochemistry. Gi3-alpha-peptide-positive cell bodies were found in the ventral tegmental area and substantia nigra, and these cells were also cholecystokinin (CCK)- and tyrosine 3-hydroxylase-positive. Gi3-alpha-peptide staining was observed in perikarya in the hippocampus and in fibers in the nucleus accumbens, tuberculum olfactorium, bed nucleus of stria terminalis, and a spino-thalamic tract, where it coexisted with CCK-like immunoreactivity as well. No coexistence with CCK occurred in Gi3-alpha-peptide-positive ependymal cells outlining the aqueduct and ventricles. Preadsorption of Gi3-alpha antibodies with CCK-8 or CCK-33 did not alter Gi3-alpha-peptide staining. The occurrence of Gi3-alpha-peptide-like immunoreactivity in CCK-containing neurons may indicate the presence of Gi3-alpha protein and in CCK/dopamine neurons may indicate an association of this Gi protein with dopamine autoreceptors.

Full text

PDF
9351

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anholt R. R., Mumby S. M., Stoffers D. A., Girard P. R., Kuo J. F., Snyder S. H. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C. Biochemistry. 1987 Feb 10;26(3):788–795. doi: 10.1021/bi00377a020. [DOI] [PubMed] [Google Scholar]
  2. Asano T., Semba R., Kamiya N., Ogasawara N., Kato K. Go, a GTP-binding protein: immunochemical and immunohistochemical localization in the rat. J Neurochem. 1988 Apr;50(4):1164–1169. doi: 10.1111/j.1471-4159.1988.tb10588.x. [DOI] [PubMed] [Google Scholar]
  3. Asano T., Semba R., Ogasawara N., Kato K. Highly sensitive immunoassay for the alpha subunit of the GTP-binding protein go and its regional distribution in bovine brain. J Neurochem. 1987 May;48(5):1617–1623. doi: 10.1111/j.1471-4159.1987.tb05710.x. [DOI] [PubMed] [Google Scholar]
  4. Birnbaumer L., Pohl S. L., Rodbell M., Sundby F. The glucagon-sensitive adenylate cyclase system in plasma membranes of rat liver. VII. Hormonal stimulation: reversibility and dependence on concentration of free hormone. J Biol Chem. 1972 Apr 10;247(7):2038–2043. [PubMed] [Google Scholar]
  5. Brabet P., Dumuis A., Sebben M., Pantaloni C., Bockaert J., Homburger V. Immunocytochemical localization of the guanine nucleotide-binding protein Go in primary cultures of neuronal and glial cells. J Neurosci. 1988 Feb;8(2):701–708. doi: 10.1523/JNEUROSCI.08-02-00701.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brann M. R., Collins R. M., Spiegel A. Localization of mRNAs encoding the alpha-subunits of signal-transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett. 1987 Sep 28;222(1):191–198. doi: 10.1016/0014-5793(87)80218-1. [DOI] [PubMed] [Google Scholar]
  7. COONS A. H. Fluorescent antibody methods. Gen Cytochem Methods. 1958;1:399–422. [PubMed] [Google Scholar]
  8. Carlsson A. Dopaminergic autoreceptors: background and implications. Adv Biochem Psychopharmacol. 1977;16:439–441. [PubMed] [Google Scholar]
  9. Codina J., Olate J., Abramowitz J., Mattera R., Cook R. G., Birnbaumer L. Alpha i-3 cDNA encodes the alpha subunit of Gk, the stimulatory G protein of receptor-regulated K+ channels. J Biol Chem. 1988 May 15;263(14):6746–6750. [PubMed] [Google Scholar]
  10. Deschenes R. J., Lorenz L. J., Haun R. S., Roos B. A., Collier K. J., Dixon J. E. Cloning and sequence analysis of a cDNA encoding rat preprocholecystokinin. Proc Natl Acad Sci U S A. 1984 Feb;81(3):726–730. doi: 10.1073/pnas.81.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Didsbury J. R., Snyderman R. Molecular cloning of a new human G protein. Evidence for two Gi alpha-like protein families. FEBS Lett. 1987 Jul 13;219(1):259–263. doi: 10.1016/0014-5793(87)81228-0. [DOI] [PubMed] [Google Scholar]
  12. Galloway M. P., Wolf M. E., Roth R. H. Regulation of dopamine synthesis in the medial prefrontal cortex is mediated by release modulating autoreceptors: studies in vivo. J Pharmacol Exp Ther. 1986 Mar;236(3):689–698. [PubMed] [Google Scholar]
  13. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  14. Goldsmith P., Rossiter K., Carter A., Simonds W., Unson C. G., Vinitsky R., Spiegel A. M. Identification of the GTP-binding protein encoded by Gi3 complementary DNA. J Biol Chem. 1988 May 15;263(14):6476–6479. [PubMed] [Google Scholar]
  15. Goldstein M. Regulatory mechanisms of dopamine biosynthesis at the tyrosine hydroxylase step. Ann N Y Acad Sci. 1984;430:1–5. doi: 10.1111/j.1749-6632.1984.tb14495.x. [DOI] [PubMed] [Google Scholar]
  16. Hökfelt T., Herrera-Marschitz M., Seroogy K., Ju G., Staines W. A., Holets V., Schalling M., Ungerstedt U., Post C., Rehfeld J. F. Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons. J Chem Neuroanat. 1988 Jan-Feb;1(1):11–51. [PubMed] [Google Scholar]
  17. Hökfelt T., Skirboll L., Rehfeld J. F., Goldstein M., Markey K., Dann O. A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience. 1980;5(12):2093–2124. doi: 10.1016/0306-4522(80)90127-x. [DOI] [PubMed] [Google Scholar]
  18. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  19. Jones D. T., Reed R. R. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem. 1987 Oct 15;262(29):14241–14249. [PubMed] [Google Scholar]
  20. Ju G., Melander T., Ceccatelli S., Hökfelt T., Frey P. Immunohistochemical evidence for a spinothalamic pathway co-containing cholecystokinin- and galanin-like immunoreactivities in the rat. Neuroscience. 1987 Feb;20(2):439–456. doi: 10.1016/0306-4522(87)90103-5. [DOI] [PubMed] [Google Scholar]
  21. Kato K., Asano T., Kamiya N., Haimoto H., Hosoda S., Nagasaka A., Ariyoshi Y., Ishiguro Y. Production of the alpha subunit of guanine nucleotide-binding protein GO by neuroendocrine tumors. Cancer Res. 1987 Nov 1;47(21):5800–5805. [PubMed] [Google Scholar]
  22. Kim S. Y., Ang S. L., Bloch D. B., Bloch K. D., Kawahara Y., Tolman C., Lee R., Seidman J. G., Neer E. J. Identification of cDNA encoding an additional alpha subunit of a human GTP-binding protein: expression of three alpha i subtypes in human tissues and cell lines. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4153–4157. doi: 10.1073/pnas.85.12.4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lad R. P., Simons C., Gierschik P., Milligan G., Woodard C., Griffo M., Goldsmith P., Ornberg R., Gerfen C. R., Spiegel A. Differential distribution of signal-transducing G-proteins in retina. Brain Res. 1987 Oct 13;423(1-2):237–246. doi: 10.1016/0006-8993(87)90845-6. [DOI] [PubMed] [Google Scholar]
  24. Largent B. L., Jones D. T., Reed R. R., Pearson R. C., Snyder S. H. G protein mRNA mapped in rat brain by in situ hybridization. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2864–2868. doi: 10.1073/pnas.85.8.2864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Markey K. A., Kondo H., Shenkman L., Goldstein M. Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol. 1980 Jan;17(1):79–85. [PubMed] [Google Scholar]
  26. Mengod G., Palacios J. M., Probst A., Harris B. Regional distribution of the expression of a human stimulatory GTP-binding protein alpha-subunit in the human brain studied by in situ hybridization. Brain Res. 1988 Aug;464(1):23–29. doi: 10.1016/0169-328x(88)90014-9. [DOI] [PubMed] [Google Scholar]
  27. Mutt V., Jorpes J. E. Structure of porcine cholecystokinin-pancreozymin. 1. Cleavage with thrombin and with trypsin. Eur J Biochem. 1968 Oct 17;6(1):156–162. doi: 10.1111/j.1432-1033.1968.tb00433.x. [DOI] [PubMed] [Google Scholar]
  28. Platt J. L., Michael A. F. Retardation of fading and enhancement of intensity of immunofluorescence by p-phenylenediamine. J Histochem Cytochem. 1983 Jun;31(6):840–842. doi: 10.1177/31.6.6341464. [DOI] [PubMed] [Google Scholar]
  29. Sasaki K., Sato M. A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors. Nature. 1987 Jan 15;325(6101):259–262. doi: 10.1038/325259a0. [DOI] [PubMed] [Google Scholar]
  30. Schramm M., Selinger Z. Message transmission: receptor controlled adenylate cyclase system. Science. 1984 Sep 21;225(4668):1350–1356. doi: 10.1126/science.6147897. [DOI] [PubMed] [Google Scholar]
  31. Spiegel A. M. Signal transduction by guanine nucleotide binding proteins. Mol Cell Endocrinol. 1987 Jan;49(1):1–16. doi: 10.1016/0303-7207(87)90058-x. [DOI] [PubMed] [Google Scholar]
  32. Spiegel A., Carter A., Brann M., Collins R., Goldsmith P., Simonds W., Vinitsky R., Eide B., Rossiter K., Weinstein L. Signal transduction by guanine nucleotide-binding proteins. Recent Prog Horm Res. 1988;44:337–375. doi: 10.1016/b978-0-12-571144-9.50015-6. [DOI] [PubMed] [Google Scholar]
  33. Sternweis P. C., Northup J. K., Smigel M. D., Gilman A. G. The regulatory component of adenylate cyclase. Purification and properties. J Biol Chem. 1981 Nov 25;256(22):11517–11526. [PubMed] [Google Scholar]
  34. Stryer L., Bourne H. R. G proteins: a family of signal transducers. Annu Rev Cell Biol. 1986;2:391–419. doi: 10.1146/annurev.cb.02.110186.002135. [DOI] [PubMed] [Google Scholar]
  35. Suki W. N., Abramowitz J., Mattera R., Codina J., Birnbaumer L. The human genome encodes at least three non-allellic G proteins with alpha i-type subunits. FEBS Lett. 1987 Aug 10;220(1):187–192. doi: 10.1016/0014-5793(87)80900-6. [DOI] [PubMed] [Google Scholar]
  36. Terashima T., Katada T., Oinuma M., Inoue Y., Ui M. Endocrine cells in pancreatic islets of Langerhans are immunoreactive to antibody against guanine nucleotide-binding protein (Go) purified from rat brain. Brain Res. 1987 Aug 4;417(1):190–194. doi: 10.1016/0006-8993(87)90199-5. [DOI] [PubMed] [Google Scholar]
  37. Terashima T., Katada T., Oinuma M., Inoue Y., Ui M. Immunohistochemical analysis of the localization of guanine nucleotide-binding protein in the mouse brain. Brain Res. 1988 Mar 1;442(2):305–311. doi: 10.1016/0006-8993(88)91516-8. [DOI] [PubMed] [Google Scholar]
  38. Terashima T., Katada T., Oinuma M., Inoue Y., Ui M. Immunohistochemical localization of guanine nucleotide-binding protein in rat retina. Brain Res. 1987 Apr 28;410(1):97–100. doi: 10.1016/s0006-8993(87)80026-4. [DOI] [PubMed] [Google Scholar]
  39. Terashima T., Katada T., Okada E., Ui M., Inoue Y. Light microscopy of GTP-binding protein (Go) immunoreactivity within the retina of different vertebrates. Brain Res. 1987 Dec 15;436(2):384–389. doi: 10.1016/0006-8993(87)91685-4. [DOI] [PubMed] [Google Scholar]
  40. Terashima T., Katada T., Takayama C., Ui M., Inoue Y. Immunohistochemical detection of GTP-binding regulatory protein (Go) in the autonomic nervous system including the enteric nervous system, superior cervical ganglion and adrenal medulla. Brain Res. 1988 Jul 12;455(2):353–359. doi: 10.1016/0006-8993(88)90094-7. [DOI] [PubMed] [Google Scholar]
  41. Tramu G., Pillez A., Leonardelli J. An efficient method of antibody elution for the successive or simultaneous localization of two antigens by immunocytochemistry. J Histochem Cytochem. 1978 Apr;26(4):322–324. doi: 10.1177/26.4.207771. [DOI] [PubMed] [Google Scholar]
  42. White F. J., Wang R. Y. Pharmacological characterization of dopamine autoreceptors in the rat ventral tegmental area: microiontophoretic studies. J Pharmacol Exp Ther. 1984 Nov;231(2):275–280. [PubMed] [Google Scholar]
  43. Worley P. F., Baraban J. M., Van Dop C., Neer E. J., Snyder S. H. Go, a guanine nucleotide-binding protein: immunohistochemical localization in rat brain resembles distribution of second messenger systems. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4561–4565. doi: 10.1073/pnas.83.12.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Yatani A., Imoto Y., Codina J., Hamilton S. L., Brown A. M., Birnbaumer L. The stimulatory G protein of adenylyl cyclase, Gs, also stimulates dihydropyridine-sensitive Ca2+ channels. Evidence for direct regulation independent of phosphorylation by cAMP-dependent protein kinase or stimulation by a dihydropyridine agonist. J Biol Chem. 1988 Jul 15;263(20):9887–9895. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES