Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Dec;85(24):9446–9450. doi: 10.1073/pnas.85.24.9446

Hydrogen burst associated with nitrogenase-catalyzed reactions.

J Liang 1, R H Burris 1
PMCID: PMC282769  PMID: 3200830

Abstract

We have used a membrane-leak mass spectrometer to follow the time courses of H2 evolution and substrate reduction by nitrogenase [reduced ferredoxin:dinitrogen oxidoreductase (ATP-hydrolyzing), EC 1.18.6.1]. In the absence of added substrates, dinitrogenase passes all of its electrons to protons to form H2, but when a reducible substrate is added the electrons from dinitrogenase are shared between protons and the added substrate so that the steady-state rate of H2 production is decreased. If a reducible substrate is added before the nitrogenase reaction is initiated, a pre-steady-state burst of H2 is evident upon initiation of the reaction. This burst is associated with all the substrates of nitrogenase examined--i.e., N2, N2O, C2H2, NaN3, and NaCN. The H2 burst is stoichiometric with dinitrogenase, but not with dinitrogenase reductase. In the H2 burst phase, 1 H2 is evolved per dinitrogenase molybdenum. Although a change in the ratio of nitrogenase components changed the initial rate of the H2 burst, the stoichiometry was not affected. Production of H2 by the burst in the presence of a high concentration of substrate is terminated after production of 1 H2 per dinitrogenase molybdenum, and a steady-state rate of H2 production is established. This response suggests that the H2 burst is not a catalytic event but a result of a once-only activation process.

Full text

PDF
9446

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BULEN W. A., BURNS R. C., LECOMTE J. R. NITROGEN FIXATION: HYDROSULFITE AS ELECTRON DONOR WITH CELL-FREE PREPARATIONS OF AZOTOBACTER VINELANDII AND RHODOSPIRILLUM RUBRUM. Proc Natl Acad Sci U S A. 1965 Mar;53:532–539. doi: 10.1073/pnas.53.3.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dilworth M. J., Thorneley R. N. Nitrogenase of Klebsiella pneumoniae. Hydrazine is a product of azide reduction. Biochem J. 1981 Mar 1;193(3):971–983. doi: 10.1042/bj1930971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Guth J. H., Burris R. H. Inhibition of nitrogenase-catalyzed NH3 formation by H2. Biochemistry. 1983 Oct 25;22(22):5111–5122. doi: 10.1021/bi00291a010. [DOI] [PubMed] [Google Scholar]
  4. HOCH G. E., SCHNEIDER K. C., BURRIS R. H. Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules. Biochim Biophys Acta. 1960 Jan 15;37:273–279. doi: 10.1016/0006-3002(60)90234-1. [DOI] [PubMed] [Google Scholar]
  5. HOCH G., KOK B. A mass spectrometer inlet system for sampling gases dissolved in liquid phases. Arch Biochem Biophys. 1963 Apr;101:160–170. doi: 10.1016/0003-9861(63)90546-0. [DOI] [PubMed] [Google Scholar]
  6. Hageman R. V., Burris R. H. Changes in the EPR signal of dinitrogenase from Azotobacter vinelandii during the lag period before hydrogen evolution begins. J Biol Chem. 1979 Nov 25;254(22):11189–11192. [PubMed] [Google Scholar]
  7. Hageman R. V., Burris R. H. Electron allocation to alternative substrates of Azotobacter nitrogenase is controlled by the electron flux through dinitrogenase. Biochim Biophys Acta. 1980 Jun 10;591(1):63–75. doi: 10.1016/0005-2728(80)90220-0. [DOI] [PubMed] [Google Scholar]
  8. Hardy R. W., Knight E., Jr ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim Biophys Acta. 1967 May 16;139(1):69–90. doi: 10.1016/0005-2744(67)90114-3. [DOI] [PubMed] [Google Scholar]
  9. Jensen B. B., Burris R. H. N2O as a substrate and as a competitive inhibitor of nitrogenase. Biochemistry. 1986 Mar 11;25(5):1083–1088. doi: 10.1021/bi00353a021. [DOI] [PubMed] [Google Scholar]
  10. Li J. L., Burris R. H. Influence of pN2 and pD2 on HD formation by various nitrogenases. Biochemistry. 1983 Sep 13;22(19):4472–4480. doi: 10.1021/bi00288a019. [DOI] [PubMed] [Google Scholar]
  11. Lowe D. J., Thorneley R. N. The mechanism of Klebsiella pneumoniae nitrogenase action. Pre-steady-state kinetics of H2 formation. Biochem J. 1984 Dec 15;224(3):877–886. doi: 10.1042/bj2240877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rivera-Ortiz J. M., Burris R. H. Interactions among substrates and inhibitors of nitrogenase. J Bacteriol. 1975 Aug;123(2):537–545. doi: 10.1128/jb.123.2.537-545.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schöllhorn R., Burris R. H. Reduction of azide by the N2-fixing enzyme system. Proc Natl Acad Sci U S A. 1967 May;57(5):1317–1323. doi: 10.1073/pnas.57.5.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Simpson F. B., Burris R. H. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science. 1984 Jun 8;224(4653):1095–1097. doi: 10.1126/science.6585956. [DOI] [PubMed] [Google Scholar]
  15. Smith B. E., Thorneley R. N., Eady R. R., Mortenson L. E. Nitrogenases from Klebsiella pneumoniae and Clostridium pasteurianum. Kinetic investigations of cross-reactions as a probe of the enzyme mechanism. Biochem J. 1976 Aug 1;157(2):439–447. doi: 10.1042/bj1570439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can J Microbiol. 1968 Jan;14(1):25–31. doi: 10.1139/m68-005. [DOI] [PubMed] [Google Scholar]
  17. Sweet W. J., Houchins J. P., Rosen P. R., Arp D. J. Polarographic measurement of H2 in aqueous solutions. Anal Biochem. 1980 Sep 15;107(2):337–340. doi: 10.1016/0003-2697(80)90393-0. [DOI] [PubMed] [Google Scholar]
  18. Swisher R. H., Landt M., Reithel F. J. Molecular weights of nitrogenase components from Azotobacter vinelandii. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1476–1482. doi: 10.1016/0006-291x(75)90525-2. [DOI] [PubMed] [Google Scholar]
  19. Thorneley R. N., Eady R. R. Nitrogenase of Klebsiella pneumoniae. Distinction between proton-reducing and acetylene-reducing forms of the enzyme: effect of temperature and component protein ratio on substrate-reduction kinetics. Biochem J. 1977 Nov 1;167(2):457–461. doi: 10.1042/bj1670457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang Z. C., Watt G. D. H2-uptake activity of the MoFe protein component of Azotobacter vinelandii nitrogenase. Proc Natl Acad Sci U S A. 1984 Jan;81(2):376–379. doi: 10.1073/pnas.81.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES