Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Dec;85(24):9461–9463. doi: 10.1073/pnas.85.24.9461

Non-heme protein in the giant extracellular hemoglobin of the earthworm Lumbricus terrestris.

K Fushitani 1, A F Riggs 1
PMCID: PMC282772  PMID: 3200832

Abstract

The protein/heme mass ratio for the extracellular hemoglobin of the earthworm Lumbricus terrestris has been redetermined. We find a value of 19,000 g of protein per mol of heme. Four major, heme-containing chains (a, b, c, and d), present in equal proportions, have a total molecular mass, with four hemes, of 69,664 Da based on their sequences. The intact hemoglobin comprises 12 subunits that form a two-layered hexagonal structure of about 3.8 MDa. This value, together with our determination of the protein/heme ratio, requires that 4 abcd units are present in each 1/12th subunit and that 192 heme-containing chains are present in the hemoglobin molecule. Our data indicate that approximately 2200 g of non-heme protein is present for each mole of heme-containing chain, or about 35,200 g per 1/12th subunit. This conclusion is consistent with the observation that chains of 31-37 kDa are present. On this basis the intact molecule would have 12 non-heme chains and 204 chains in all to give a total molecular mass of 3.77 MDa, close to that observed.

Full text

PDF
9461

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benesch R., Benesch R. E., Yu C. I. Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc Natl Acad Sci U S A. 1968 Feb;59(2):526–532. doi: 10.1073/pnas.59.2.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bunn H. F., Jandl J. H. Exchange of heme among hemoglobins and between hemoglobin and albumin. J Biol Chem. 1968 Feb 10;243(3):465–475. [PubMed] [Google Scholar]
  3. Chung M. C., Ellerton H. D. The physico-chemical and functional properties of extracellular respiratory haemoglobins and chlorocruorins. Prog Biophys Mol Biol. 1979;35(2):53–102. doi: 10.1016/0079-6107(80)90003-6. [DOI] [PubMed] [Google Scholar]
  4. Darawshe S., Tsafadyah Y., Daniel E. Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochem J. 1987 Mar 15;242(3):689–694. doi: 10.1042/bj2420689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fushitani K., Imai K., Riggs A. F. Oxygenation properties of hemoglobin from the earthworm, Lumbricus terrestris. Effects of pH, salts, and temperature. J Biol Chem. 1986 Jun 25;261(18):8414–8423. [PubMed] [Google Scholar]
  6. Fushitani K., Matsuura M. S., Riggs A. F. The amino acid sequences of chains a, b, and c that form the trimer subunit of the extracellular hemoglobin from Lumbricus terrestris. J Biol Chem. 1988 May 15;263(14):6502–6517. [PubMed] [Google Scholar]
  7. Garlick R. L., Riggs A. F. The amino acid sequence of a major polypeptide chain of earthworm hemoglobin. J Biol Chem. 1982 Aug 10;257(15):9005–9015. [PubMed] [Google Scholar]
  8. Hebbel R. P., Morgan W. T., Eaton J. W., Hedlund B. E. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci U S A. 1988 Jan;85(1):237–241. doi: 10.1073/pnas.85.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapp O. H., Mainwaring M. G., Vinogradov S. N., Crewe A. V. Scanning transmission electron microscopic examination of the hexagonal bilayer structures formed by the reassociation of three of the four subunits of the extracellular hemoglobin of Lumbricus terrestris. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7532–7536. doi: 10.1073/pnas.84.21.7532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LEVIN O. Electron microscope observations on some 60 s erythrocruorins and their split products. J Mol Biol. 1963 Jan;6:95–101. doi: 10.1016/s0022-2836(63)80084-4. [DOI] [PubMed] [Google Scholar]
  11. Lightbody J. J., Quabar A. N., Mainwaring M. G., Young J. S., Walz D. A., Vinogradov S. N., Gotoh T. Immunological relatedness of annelid extracellular hemoglobins and chlorocruorins. Comp Biochem Physiol B. 1988;90(2):301–305. doi: 10.1016/0305-0491(88)90077-6. [DOI] [PubMed] [Google Scholar]
  12. Ohtsuki M., Crewe A. V. Evidence for a central substructure in a Lumbricus terrestris hemoglobin obtained with STEM low-dose and digital processing techniques. J Ultrastruct Res. 1983 Jun;83(3):312–318. doi: 10.1016/s0022-5320(83)90138-7. [DOI] [PubMed] [Google Scholar]
  13. Shishikura F., Mainwaring M. G., Yurewicz E. C., Lightbody J. J., Walz D. A., Vinogradov S. N. A disulfide-bonded trimer of myoglobin-like chains is the principal subunit of the extracellular hemoglobin of Lumbricus terrestris. Biochim Biophys Acta. 1986 Feb 14;869(3):314–321. doi: 10.1016/0167-4838(86)90071-3. [DOI] [PubMed] [Google Scholar]
  14. Shishikura F., Snow J. W., Gotoh T., Vinogradov S. N., Walz D. A. Amino acid sequence of the monomer subunit of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem. 1987 Mar 5;262(7):3123–3131. [PubMed] [Google Scholar]
  15. Shlom J. M., Vinogradov S. N. A study of the subunit structure of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem. 1973 Nov 25;248(22):7904–7912. [PubMed] [Google Scholar]
  16. Suzuki T., Gotoh T. The complete amino acid sequence of giant multisubunit hemoglobin from the polychaete Tylorrhynchus heterochaetus. J Biol Chem. 1986 Jul 15;261(20):9257–9267. [PubMed] [Google Scholar]
  17. Tomita S., Riggs A. Studies of the interaction of 2,3-diphosphoglycerate and carbon dioxide with hemoglobins from mouse, man, and elephant. J Biol Chem. 1971 Feb 10;246(3):547–554. [PubMed] [Google Scholar]
  18. Vinogradov S. N., Lugo S. D., Mainwaring M. G., Kapp O. H., Crewe A. V. Bracelet protein: a quaternary structure proposed for the giant extracellular hemoglobin of Lumbricus terrestris. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8034–8038. doi: 10.1073/pnas.83.21.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vinogradov S. N., Shlom J. M., Hall B. C., Kapp O. H., Mizukami H. The dissociation of Lumbricus terrestris hemoglobin: a model of its subunit structure. Biochim Biophys Acta. 1977 May 27;492(1):136–155. doi: 10.1016/0005-2795(77)90221-5. [DOI] [PubMed] [Google Scholar]
  20. Vinogradov S. N. The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B. 1985;82(1):1–15. doi: 10.1016/0305-0491(85)90120-8. [DOI] [PubMed] [Google Scholar]
  21. Wiechelman K. J., Parkhurst L. J. Kinetics of ligand binding in the hemoglobin of Lumbricus terrestris. Biochemistry. 1972 Nov 21;11(24):4515–4520. doi: 10.1021/bi00774a013. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES