Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Dec;85(24):9538–9541. doi: 10.1073/pnas.85.24.9538

Microtubule-dependent effect of phorbol ester on the contractility of cytoskeleton of cultured fibroblasts.

L A Lyass 1, A D Bershadsky 1, J M Vasiliev 1, I M Gelfand 1
PMCID: PMC282789  PMID: 3059349

Abstract

The effect of the tumor promoter phorbol 12-myristate 13-acetate (PMA) upon the contractility of permeabilized cell models (cytoskeletons) of mouse fibroblasts was examined. Contraction was induced by incubation of cell models in a solution containing ATP and was assessed quantitatively by measuring alterations of the area of cell model projection on the substrate. Immunofluorescence microscopy was used to assess alterations of cytoskeleton morphology in the course of permeabilization and contraction. It was found that contractility of cell models from PMA-treated fibroblasts was considerably diminished as compared with the models from control fibroblasts. ATP induced only local contraction of certain zones of actin cortex in models from PMA-treated fibroblasts; it did not induce general contraction, characteristic of control models. Normal high contractility was characteristic of the models from the cells preincubated with PMA in combination with Colcemid. PMA is a specific activator of protein kinase C, one of the key enzymes of the membrane signal-transduction pathway. It is suggested that protein kinase C regulates contractility of actin cortex and that the pathway of this regulation has a microtubule-dependent stage blocked by Colcemid.

Full text

PDF
9538

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bershadsky A. D., Tint I. S., Svitkina T. M. Association of intermediate filaments with vinculin-containing adhesion plaques of fibroblasts. Cell Motil Cytoskeleton. 1987;8(3):274–283. doi: 10.1002/cm.970080308. [DOI] [PubMed] [Google Scholar]
  2. Blumberg P. M. In vitro studies on the mode of action of the phorbol esters, potent tumor promoters, part 2. Crit Rev Toxicol. 1981 Jun;8(3):199–234. doi: 10.3109/10408448109109658. [DOI] [PubMed] [Google Scholar]
  3. Blumberg P. M. In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: part 1. Crit Rev Toxicol. 1980 Dec;8(2):153–197. doi: 10.3109/10408448009037493. [DOI] [PubMed] [Google Scholar]
  4. Cande W. Z., Ezzell R. M. Evidence for regulation of lamellipodial and tail contraction of glycerinated chicken embryonic fibroblasts by myosin light chain kinase. Cell Motil Cytoskeleton. 1986;6(6):640–648. doi: 10.1002/cm.970060612. [DOI] [PubMed] [Google Scholar]
  5. Danowski B. A., Harris A. K. Changes in fibroblast contractility, morphology, and adhesion in response to a phorbol ester tumor promoter. Exp Cell Res. 1988 Jul;177(1):47–59. doi: 10.1016/0014-4827(88)90024-9. [DOI] [PubMed] [Google Scholar]
  6. Dugina V. B., Svitkina T. M., Vasiliev J. M., Gelfand I. M. Special type of morphological reorganization induced by phorbol ester: reversible partition of cell into motile and stable domains. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4122–4125. doi: 10.1073/pnas.84.12.4122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Farber R. A., Liskay R. M. Karyotypic analysis of a near-diploid established mouse cell line. Cytogenet Cell Genet. 1974;13(4):384–396. doi: 10.1159/000130288. [DOI] [PubMed] [Google Scholar]
  8. Holzapfel G., Wehland J., Weber K. Calcium control of actin-myosin based contraction in triton models of mouse 3T3 fibroblasts is mediated by the myosin light chain kinase (MLCK)-calmodulin complex. Exp Cell Res. 1983 Oct;148(1):117–126. doi: 10.1016/0014-4827(83)90192-1. [DOI] [PubMed] [Google Scholar]
  9. Hynes R. O., Destree A. T. 10 nm filaments in normal and transformed cells. Cell. 1978 Jan;13(1):151–163. doi: 10.1016/0092-8674(78)90146-0. [DOI] [PubMed] [Google Scholar]
  10. Katoh N., Wise B. C., Kuo J. F. Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase. Biochem J. 1983 Jan 1;209(1):189–195. doi: 10.1042/bj2090189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kawamoto S., Hidaka H. Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin-binding proteins. Biochem Biophys Res Commun. 1984 Feb 14;118(3):736–742. doi: 10.1016/0006-291x(84)91456-6. [DOI] [PubMed] [Google Scholar]
  12. Lyass L. A., Bershadsky A. D., Gelfand V. I., Serpinskaya A. S., Stavrovskaya A. A., Vasiliev J. M., Gelfand I. M. Multinucleation-induced improvement of the spreading of transformed cells on the substratum. Proc Natl Acad Sci U S A. 1984 May;81(10):3098–3102. doi: 10.1073/pnas.81.10.3098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Masuda H., Owaribe K., Hatano S. Contraction of triton-treated culture cells. A calcium-sensitive contractile model. Exp Cell Res. 1983 Jan;143(1):79–90. doi: 10.1016/0014-4827(83)90111-8. [DOI] [PubMed] [Google Scholar]
  14. Masuda H., Owaribe K., Hayashi H., Hatano S. Ca2+-dependent contraction of human lung fibroblasts treated with Triton X-100: a role of Ca2+-calmodulin-dependent phosphorylation of myosin 20,000-dalton light chain. Cell Motil. 1984;4(5):315–331. doi: 10.1002/cm.970040503. [DOI] [PubMed] [Google Scholar]
  15. Nishikawa M., Sellers J. R., Adelstein R. S., Hidaka H. Protein kinase C modulates in vitro phosphorylation of the smooth muscle heavy meromyosin by myosin light chain kinase. J Biol Chem. 1984 Jul 25;259(14):8808–8814. [PubMed] [Google Scholar]
  16. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  17. Rasmussen H., Takuwa Y., Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J. 1987 Sep;1(3):177–185. [PubMed] [Google Scholar]
  18. Schliwa M., Nakamura T., Porter K. R., Euteneuer U. A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells. J Cell Biol. 1984 Sep;99(3):1045–1059. doi: 10.1083/jcb.99.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Umekawa H., Hidaka H. Phosphorylation of caldesmon by protein kinase C. Biochem Biophys Res Commun. 1985 Oct 15;132(1):56–62. doi: 10.1016/0006-291x(85)90987-8. [DOI] [PubMed] [Google Scholar]
  20. Umekawa H., Naka M., Inagaki M., Onishi H., Wakabayashi T., Hidaka H. Conformational studies of myosin phosphorylated by protein kinase C. J Biol Chem. 1985 Aug 15;260(17):9833–9837. [PubMed] [Google Scholar]
  21. Vasiliev J. M. Actin cortex and microtubular system in morphogenesis: cooperation and competition. J Cell Sci Suppl. 1987;8:1–18. doi: 10.1242/jcs.1987.supplement_8.1. [DOI] [PubMed] [Google Scholar]
  22. Weinstein I. B., Lee L. S., Fisher P. B., Mufson A., Yamasaki H. Action of phorbol esters in cell culture: mimicry of transformation, altered differentiation, and effects on cell membranes. J Supramol Struct. 1979;12(2):195–208. doi: 10.1002/jss.400120206. [DOI] [PubMed] [Google Scholar]
  23. Werth D. K., Niedel J. E., Pastan I. Vinculin, a cytoskeletal substrate of protein kinase C. J Biol Chem. 1983 Oct 10;258(19):11423–11426. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES