Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1988 Dec;85(24):9660–9663. doi: 10.1073/pnas.85.24.9660

Rapid separation and purification of oligonucleotides by high-performance capillary gel electrophoresis.

A S Cohen 1, D R Najarian 1, A Paulus 1, A Guttman 1, J A Smith 1, B L Karger 1
PMCID: PMC282829  PMID: 3200850

Abstract

Picomole amounts of oligodeoxynucleotides [polydeoxyadenylic acids, (dA)40-60] were baseline resolved and analyzed in less than 8 min by high-performance capillary electrophoresis with polyacrylamide gels. In addition, fast analysis of a crude 70-mer oligodeoxynucleotide and a slab gel-purified 99-mer oligodeoxynucleotide was accomplished, demonstrating the ability of high-performance capillary electrophoresis to characterize rapidly synthesized oligonucleotides. Besides analytical separations, 800 ng of a primer (20-mer) was isolated in less than 20 min. The purified species was collected in water and subsequently used as a probe in a standard dot-blot analysis. The use of high-performance capillary electrophoresis for the analysis and purification of a variety of biopolymers is simple, rapid, and has the potential for automation.

Full text

PDF
9660

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Capillary electrophoresis: anticipating the state of the art at an early stage. Science. 1988 Mar 18;239(4846):1377–1378. [PubMed] [Google Scholar]
  2. Cohen A. S., Karger B. L. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. J Chromatogr. 1987 Jun 26;397:409–417. doi: 10.1016/s0021-9673(01)85026-3. [DOI] [PubMed] [Google Scholar]
  3. Cohen A. S., Terabe S., Smith J. A., Karger B. L. High-performance capillary electrophoretic separation of bases, nucleosides, and oligonucleotides: retention manipulation via micellar solutions and metal additives. Anal Chem. 1987 Apr 1;59(7):1021–1027. doi: 10.1021/ac00134a020. [DOI] [PubMed] [Google Scholar]
  4. Compton S. W., Brownlee R. G. Capillary electrophoresis. Biotechniques. 1988 May;6(5):432–440. [PubMed] [Google Scholar]
  5. Edge M. D., Green A. R., Heathcliffe G. R., Meacock P. A., Schuch W., Scanlon D. B., Atkinson T. C., Newton C. R., Markham A. F. Total synthesis of a human leukocyte interferon gene. Nature. 1981 Aug 20;292(5825):756–762. doi: 10.1038/292756a0. [DOI] [PubMed] [Google Scholar]
  6. Hjertén S., Elenbring K., Kilár F., Liao J. L., Chen A. J., Siebert C. J., Zhu M. D. Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus. J Chromatogr. 1987 Aug 21;403:47–61. doi: 10.1016/s0021-9673(00)96340-4. [DOI] [PubMed] [Google Scholar]
  7. Hjertén S. Free zone electrophoresis. Chromatogr Rev. 1967 Dec;9(2):122–219. doi: 10.1016/0009-5907(67)80003-6. [DOI] [PubMed] [Google Scholar]
  8. Jorgenson J. W., Lukacs K. D. Capillary zone electrophoresis. Science. 1983 Oct 21;222(4621):266–272. doi: 10.1126/science.6623076. [DOI] [PubMed] [Google Scholar]
  9. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Serpersu E. H., Shortle D., Mildvan A. S. Kinetic and magnetic resonance studies of effects of genetic substitution of a Ca2+-liganding amino acid in staphylococcal nuclease. Biochemistry. 1986 Jan 14;25(1):68–77. doi: 10.1021/bi00349a011. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES