Abstract
To evaluate liposome formulations for use as intracellular sustained-release drug depots, we have compared the uptake and degradation in rat liver and spleen of liposomes of various compositions, containing as their bulk phospholipid an ether-linked phospholipid or one of several ester-linked phospholipids, by perturbed angular correlation spectroscopy. Multilamellar and small unilamellar vesicles (MLVs and SUVs), composed of egg phosphatidylcholine, sphingomyelin, distearoyl phosphatidylcholine (DSPC), dipalmitoyl phosphatidylcholine (DPPC) or its analog dihexadecylglycerophosphorylcholine (DHPC), and cholesterol plus phosphatidylserine, and containing 111In complexed to nitrilotriacetic acid, were injected intravenously in rats. Recovery of 111In-labeled liposomes in blood, liver, and spleen was assessed at specific time points after injection and the percentage of liposomes still intact in liver and spleen was determined by measurement of the time-integrated angular perturbation factor [G22(infinity)] of the 111In label. We found that MLVs but not SUVs, having DHPC as their bulk phospholipid, showed an increased resistance against lysosomal degradation as compared to other phospholipid-containing liposomes. The use of diacyl phospholipids with a high gel/liquid-crystalline phase-transition temperature, such as DPPC and DSPC, also retarded degradation of MLV, but not of SUV in the dose range tested, while the rate of uptake of these liposomes by the liver was lower.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal K., Bali A., Gupta C. M. Effect of phospholipid structure on stability and survival times of liposomes in circulation. Biochim Biophys Acta. 1986 Oct 1;883(3):468–475. doi: 10.1016/0304-4165(86)90286-2. [DOI] [PubMed] [Google Scholar]
- Agarwal K., Bali A., Gupta C. M. Influence of the phospholipid structure on the stability of liposomes in serum. Biochim Biophys Acta. 1986 Mar 27;856(1):36–40. doi: 10.1016/0005-2736(86)90006-4. [DOI] [PubMed] [Google Scholar]
- Baldeschwieler J. D. Phospholipid vesicle targeting using synthetic glycolipid and other determinants. Ann N Y Acad Sci. 1985;446:349–367. doi: 10.1111/j.1749-6632.1985.tb18413.x. [DOI] [PubMed] [Google Scholar]
- Beaumier P. L., Hwang K. J. An efficient method for loading indium-111 into liposomes using acetylacetone. J Nucl Med. 1982 Sep;23(9):810–815. [PubMed] [Google Scholar]
- Beaumier P. L., Hwang K. J. Effects of liposome size on the degradation of bovine brain sphingomyelin/cholesterol liposomes in the mouse liver. Biochim Biophys Acta. 1983 May 26;731(1):23–30. doi: 10.1016/0005-2736(83)90393-0. [DOI] [PubMed] [Google Scholar]
- Bonté F., Hsu M. J., Papp A., Wu K., Regen S. L., Juliano R. L. Interactions of polymerizable phosphatidylcholine vesicles with blood components: relevance to biocompatibility. Biochim Biophys Acta. 1987 Jun 12;900(1):1–9. doi: 10.1016/0005-2736(87)90271-9. [DOI] [PubMed] [Google Scholar]
- Damen J., Regts J., Scherphof G. Transfer and exchange of phospholipid between small unilamellar liposomes and rat plasma high density lipoproteins. Dependence on cholesterol content and phospholipid composition. Biochim Biophys Acta. 1981 Sep 24;665(3):538–545. doi: 10.1016/0005-2760(81)90268-x. [DOI] [PubMed] [Google Scholar]
- Desmukh D. S., Bear W. D., Wisniewski H. M., Brockerhoff H. Long-living liposomes as potential drug carriers. Biochem Biophys Res Commun. 1978 May 15;82(1):328–334. doi: 10.1016/0006-291x(78)90613-7. [DOI] [PubMed] [Google Scholar]
- Gregoriadis G., Neerunjun E. D. Homing of liposomes to target cells. Biochem Biophys Res Commun. 1975 Jul 22;65(2):537–544. doi: 10.1016/s0006-291x(75)80180-x. [DOI] [PubMed] [Google Scholar]
- Hwang K. J., Mauk M. R. Fate of lipid vesicles in vivo: a gamma-ray perturbed angular correlation study. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4991–4995. doi: 10.1073/pnas.74.11.4991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirby C., Clarke J., Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J. 1980 Feb 15;186(2):591–598. doi: 10.1042/bj1860591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krause H. J., Juliano R. L., Regen S. In vivo behavior of polymerized lipid vesicles. J Pharm Sci. 1987 Jan;76(1):1–5. doi: 10.1002/jps.2600760102. [DOI] [PubMed] [Google Scholar]
- Lopez-Berestein G., Fainstein V., Hopfer R., Mehta K., Sullivan M. P., Keating M., Rosenblum M. G., Mehta R., Luna M., Hersh E. M. Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis. 1985 Apr;151(4):704–710. doi: 10.1093/infdis/151.4.704. [DOI] [PubMed] [Google Scholar]
- Mauk M. R., Gamble R. C. Stability of lipid vesicles in tissues of the mouse: a gamma-ray perturbed angular correlation study. Proc Natl Acad Sci U S A. 1979 Feb;76(2):765–769. doi: 10.1073/pnas.76.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKeone B. J., Pownall H. J., Massey J. B. Ether phosphatidylcholines: comparison of miscibility with ester phosphatidylcholines and sphingomyelin, vesicle fusion, and association with apolipoprotein A-I. Biochemistry. 1986 Nov 18;25(23):7711–7716. doi: 10.1021/bi00371a064. [DOI] [PubMed] [Google Scholar]
- Poznansky M. J., Juliano R. L. Biological approaches to the controlled delivery of drugs: a critical review. Pharmacol Rev. 1984 Dec;36(4):277–336. [PubMed] [Google Scholar]
- Roerdink F., Dijkstra J., Hartman G., Bolscher B., Scherphof G. The involvement of parenchymal, Kupffer and endothelial liver cells in the hepatic uptake of intravenously injected liposomes. Effects of lanthanum and gadolinium salts. Biochim Biophys Acta. 1981 Sep 18;677(1):79–89. doi: 10.1016/0304-4165(81)90148-3. [DOI] [PubMed] [Google Scholar]
- Scherphof G. L., Dijkstra J., Spanjer H. H., Derksen J. T., Roerdink F. H. Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Ann N Y Acad Sci. 1985;446:368–384. doi: 10.1111/j.1749-6632.1985.tb18414.x. [DOI] [PubMed] [Google Scholar]
- Scherphof G., Morselt H., Regts J., Wilschut J. C. The involvement of the lipid phase transition in the plasma-induced dissolution of multilamellar phosphatidylcholine vesicles. Biochim Biophys Acta. 1979 Sep 21;556(2):196–207. doi: 10.1016/0005-2736(79)90042-7. [DOI] [PubMed] [Google Scholar]
- Senior J. H. Fate and behavior of liposomes in vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst. 1987;3(2):123–193. [PubMed] [Google Scholar]
- Spanjer H. H., van Galen M., Roerdink F. H., Regts J., Scherphof G. L. Intrahepatic distribution of small unilamellar liposomes as a function of liposomal lipid composition. Biochim Biophys Acta. 1986 Dec 16;863(2):224–230. doi: 10.1016/0005-2736(86)90262-2. [DOI] [PubMed] [Google Scholar]
- Stein O., Halperin G., Leitersdorf E., Olivecrona T., Stein Y. Lipoprotein lipase mediated uptake of non-degradable ether analogues of phosphatidylcholine and cholesteryl ester by cultured cells. Biochim Biophys Acta. 1984 Aug 15;795(1):47–59. doi: 10.1016/0005-2760(84)90103-6. [DOI] [PubMed] [Google Scholar]
- Stein Y., Halperin G., Leitersdorf E., Dabach Y., Hollander G., Stein O. Metabolism of liposomes prepared from a labelled ether analog of 1,2-dioleoyl-sn-glycero-3-phosphocholine in the rat. Biochim Biophys Acta. 1984 May 11;793(3):354–364. doi: 10.1016/0005-2760(84)90249-2. [DOI] [PubMed] [Google Scholar]
- Storm G., Roerdink F. H., Steerenberg P. A., de Jong W. H., Crommelin D. J. Influence of lipid composition on the antitumor activity exerted by doxorubicin-containing liposomes in a rat solid tumor model. Cancer Res. 1987 Jul 1;47(13):3366–3372. [PubMed] [Google Scholar]
