Abstract
Both prophage integration in bacteriophage P2 and the reverse event, prophage excision, are known to require a specific phage gene product, the so-called int function. We find that P2 can integrate efficiently at a free attachment site also in an immune host (i.e., in the presence of phage specific repressor) provided the superinfecting phage is not deficient in int function. Prophage P2, on the other hand, is not excised from the host chromosome even in a derepressed lysogen unless int function is supplied by a superinfecting phage. Thus, the int function of P2 is expressed constitutively by the superinfecting phage, but is not expressed by the prophage even in the absence of phage repressor. It is proposed that the int function of P2 is not controlled by phage repressor, but belongs instead to a constitutive operon that is physically disrupted by prophage integration.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BERTANI G. Multiple lysogeny from single infection. Virology. 1962 Sep;18:131–139. doi: 10.1016/0042-6822(62)90185-x. [DOI] [PubMed] [Google Scholar]
- BERTANI G., SIX E. Inheritance of prophage P2 in bacterial crosses. Virology. 1958 Oct;6(2):357–381. doi: 10.1016/0042-6822(58)90089-8. [DOI] [PubMed] [Google Scholar]
- BERTANI G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol. 1951 Sep;62(3):293–300. doi: 10.1128/jb.62.3.293-300.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertani L. E. Abortive induction of bacteriophage P2. Virology. 1968 Sep;36(1):87–103. doi: 10.1016/0042-6822(68)90119-0. [DOI] [PubMed] [Google Scholar]
- Calef E. Mapping of integration and excision crossovers in superinfection double lysogens for phage lambda in Escherichia coli. Genetics. 1967 Mar;55(3):547–556. doi: 10.1093/genetics/55.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campbell A., Zissler J. The steric effect in lysogenization by bacteriophage lambda. 3. Superinfection of monolysogenic derivatives of a strain diploid for the prophage attachment site. Virology. 1966 Apr;28(4):659–662. doi: 10.1016/0042-6822(66)90250-9. [DOI] [PubMed] [Google Scholar]
- Erikson R. L. Replication of RNA viruses. Annu Rev Microbiol. 1968;22:305–322. doi: 10.1146/annurev.mi.22.100168.001513. [DOI] [PubMed] [Google Scholar]
- Erskine J. M. Host conversion by prophage lambda in a recombination-deficient mutant of Escherichia coli. J Gen Virol. 1969 Sep;5(2):161–169. doi: 10.1099/0022-1317-5-2-161. [DOI] [PubMed] [Google Scholar]
- Gingery R., Echols H. Mutants of bacteriophage lambda unable to integrate into the host chromosome. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1507–1514. doi: 10.1073/pnas.58.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottesman M. E., Yarmolinsky M. B. Integration-negative mutants of bacteriophage lambda. J Mol Biol. 1968 Feb 14;31(3):487–505. doi: 10.1016/0022-2836(68)90423-3. [DOI] [PubMed] [Google Scholar]
- Imamoto F., Ito J. Simultaneous initiation of transcription and translation at internal sites in the tryptophan operon of E. coli. Nature. 1968 Oct 5;220(5162):27–31. doi: 10.1038/220027a0. [DOI] [PubMed] [Google Scholar]
- Inman R. B., Bertani G. Heat denaturation of P2 bacteriophage DNA: compositional heterogeneity. J Mol Biol. 1969 Sep 28;44(3):533–549. doi: 10.1016/0022-2836(69)90378-7. [DOI] [PubMed] [Google Scholar]
- Jensen F. C., Koprowski H. Absence of repressor in SV40-transformed cells. Virology. 1969 Apr;37(4):687–690. doi: 10.1016/0042-6822(69)90290-6. [DOI] [PubMed] [Google Scholar]
- Lindahl G. Genetic map of bacteriophage P2. Virology. 1969 Dec;39(4):839–860. doi: 10.1016/0042-6822(69)90021-x. [DOI] [PubMed] [Google Scholar]
- Lindahl G. Multiple recombination mechanisms in bacteriophage P2. Virology. 1969 Dec;39(4):861–866. doi: 10.1016/0042-6822(69)90022-1. [DOI] [PubMed] [Google Scholar]
- Manly K. F., Signer E. R., Radding C. M. Nonessential functions of bacteriophage lambda. Virology. 1969 Feb;37(2):177–188. doi: 10.1016/0042-6822(69)90197-4. [DOI] [PubMed] [Google Scholar]
- SIX E. The rate of spontaneous lysis of lysogenic bacteria. Virology. 1959 Mar;7(3):328–346. doi: 10.1016/0042-6822(59)90202-8. [DOI] [PubMed] [Google Scholar]
- Sambrook J., Westphal H., Srinivasan P. R., Dulbecco R. The integrated state of viral DNA in SV40-transformed cells. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1288–1295. doi: 10.1073/pnas.60.4.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins J. F., Dulbecco R. Production of SV40 virus in heterokaryons of transformed and susceptible cells. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1396–1403. doi: 10.1073/pnas.58.4.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zissler J. Integration-negative (int) mutants of phage lambda. Virology. 1967 Jan;31(1):189–189. doi: 10.1016/0042-6822(67)90030-x. [DOI] [PubMed] [Google Scholar]