Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Apr;65(4):1025–1032. doi: 10.1073/pnas.65.4.1025

Synthetic Spectroscopic Models Related to Coenzymes and Base Pairs, VII. Stacking Interactions in tRNA; the „Bend” at Dimethylguanosine*,

Hajime Iwamura 1,2, Nelson J Leonard 1,2, Josef Eisinger 1,2
PMCID: PMC283018  PMID: 5266146

Abstract

We have examined the stacking interactions of N2-dimethyl-guanosine with the nucleosides, e.g., adenosine and cytidine, found adjacent to it in certain tRNA's, by the use of model compounds in which the trimethylene bridge was substituted for the ribose-phosphate-ribose linkage. From the hypochromism exhibited by synthetic 9-[3-(aden-9-yl)propyl]-2-dimethylaminopurine-6-one (IV) and by 9-[3-(cytos-1-yl)propyl]2-dimethylaminopurin-6-one in aqueous solution (VI) it is appearent that the interaction is at least as great between the N2-dimethylguanine moiety and adenine or cytosine as between guanine and these two bases. The fluorescence and phosphorescence emission spectra were obtained in ethylene glycol-water glass at 80°K. The exciplex fluorescence observed for both bi-molecules (IV and VI) containing the N2-dimethylguanine unit provides further evidence for stacked chromophores.

Full text

PDF
1025

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baev A. A., Mirzabekov A. D., Aksel'rod V. D., Venkstern T. V., Li L., Krutilina A. I., Fodor I., Kazarinova L. Pervichnaia struktura valinovoi transportnoi RNK 1 pekarskikh drozhzhei. Chastichnaia rekonstruktsiia molekuly. Dokl Akad Nauk SSSR. 1967 Mar-Apr;173(1):204–207. [PubMed] [Google Scholar]
  2. Browne D. T., Eisinger J., Leonard N. J. Synthetic spectroscopic models related to coenzymes and base pairs. II. Evidence for intramolecular base-base interactions in dinucleotide analog. J Am Chem Soc. 1968 Dec 18;90(26):7302–7323. doi: 10.1021/ja01028a023. [DOI] [PubMed] [Google Scholar]
  3. Cory S., Marcker K. A., Dube S. K., Clark B. F. Primary structure of a methionine transfer RNA from Escherichia coli. Nature. 1968 Dec 7;220(5171):1039–1040. doi: 10.1038/2201039a0. [DOI] [PubMed] [Google Scholar]
  4. Davis R. C., Tinoco I., Jr Temperature-dependent properties of dinucleoside phosphates. Biopolymers. 1968;6(2):223–242. doi: 10.1002/bip.1968.360060206. [DOI] [PubMed] [Google Scholar]
  5. Doctor B. P., Loebel J. E., Sodd M. A., Winter D. B. Nucleotide sequence of Escherichia coli tyrosine transfer ribonucleic acid. Science. 1969 Feb 14;163(3868):693–695. doi: 10.1126/science.163.3868.693. [DOI] [PubMed] [Google Scholar]
  6. Dube S. K., Marcker K. A., Clark B. F., Cory S. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature. 1968 Apr 20;218(5138):232–233. doi: 10.1038/218232a0. [DOI] [PubMed] [Google Scholar]
  7. Eisinger J. A variable temperature, U.V. luminescence spectrograph for small samples. Photochem Photobiol. 1969 Mar;9(3):247–258. doi: 10.1111/j.1751-1097.1969.tb07289.x. [DOI] [PubMed] [Google Scholar]
  8. Eisinger J., Shulman R. G. Excited electronic states of DNA. Science. 1968 Sep 27;161(3848):1311–1319. doi: 10.1126/science.161.3848.1311. [DOI] [PubMed] [Google Scholar]
  9. GERSTER J. F., ROBINS R. K. PURINE NUCLEOSIDES. X. THE SYNTHESIS OF CERTAIN NATURALLY OCCURRING 2-SUBSTITUTED AMINO-9-BETA-D-RIBOFURANOSYLPURIN-6(1H)-ONES (N2-SUBSTITUTED GUANOSINES). J Am Chem Soc. 1965 Aug 20;87:3752–3759. doi: 10.1021/ja01094a037. [DOI] [PubMed] [Google Scholar]
  10. HOLLEY R. W., APGAR J., EVERETT G. A., MADISON J. T., MARQUISEE M., MERRILL S. H., PENSWICK J. R., ZAMIR A. STRUCTURE OF A RIBONUCLEIC ACID. Science. 1965 Mar 19;147(3664):1462–1465. doi: 10.1126/science.147.3664.1462. [DOI] [PubMed] [Google Scholar]
  11. Helmkamp G. K., Kondo N. S. Purine stacking: effects of alkyl substituents. Biochim Biophys Acta. 1968 Apr 22;157(2):242–257. doi: 10.1016/0005-2787(68)90079-8. [DOI] [PubMed] [Google Scholar]
  12. Leonard N. J., Iwamura H., Eisinger J. Synthetic spectroscopic models related to coenzymes and base pairs. IV. Stacking interactions in tRNA; the anticodon-adjacent base. Proc Natl Acad Sci U S A. 1969 Sep;64(1):352–359. doi: 10.1073/pnas.64.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leonard N. J., Scott T. G., Huang P. C. Spectroscopic models related to coenzymes and base pairs. I. The basis for hypochromism in the ultraviolet spectra of model systems related to nicotinamide--adenine dinucleotide. J Am Chem Soc. 1967 Dec 20;89(26):7137–7138. doi: 10.1021/ja01002a066. [DOI] [PubMed] [Google Scholar]
  14. Madison J. T., Everett G. A., Kung H. K. Oligonucleoides from yeast tyrosine transfer ribonucleic acid. J Biol Chem. 1967 Mar 25;242(6):1318–1323. [PubMed] [Google Scholar]
  15. Madison J. T., Kung H. K. Large oligonucleotides isolated from yeast tyrosine transfer ribonucleic acid after partial digestion with ribonuclease T1. J Biol Chem. 1967 Mar 25;242(6):1324–1330. [PubMed] [Google Scholar]
  16. Mizutani T., Miyazaki M., Takemura S. The primary structure of valine-I transfer ribonucleic acid from Torulopsis utilis. II. Partial digestion with ribonuclease T1 and derivation of the complete sequence. J Biochem. 1968 Dec;64(6):839–848. doi: 10.1093/oxfordjournals.jbchem.a128966. [DOI] [PubMed] [Google Scholar]
  17. Pochon F., Michelson A. M. Polynucleotide analogues. XIV. Poly N2-dimethylguanylate. Biochim Biophys Acta. 1969 May 20;182(1):17–23. doi: 10.1016/0005-2787(69)90515-2. [DOI] [PubMed] [Google Scholar]
  18. Rahn R. O., Yamane T., Eisinger J., Longworth J. W., Shulman R. G. Luminescence and electron spin resonance studies of adenine in various polynucleotides. J Chem Phys. 1966 Oct 15;45(8):2947–2954. doi: 10.1063/1.1728050. [DOI] [PubMed] [Google Scholar]
  19. Rajbhandary U. L., Chang S. H., Stuart A., Faulkner R. D., Hoskinson R. M., Khorana H. G. Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1967 Mar;57(3):751–758. doi: 10.1073/pnas.57.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SCHELLMAN J. A. The thermodynamics of urea solutions and the heat of formation of the peptide hydrogen bond. C R Trav Lab Carlsberg Chim. 1955;29(14-15):223–229. [PubMed] [Google Scholar]
  21. SHUGAR D., SZER W. Secondary structure in poly-ribothymidylic acid. J Mol Biol. 1962 Nov;5:580–582. doi: 10.1016/s0022-2836(62)80134-x. [DOI] [PubMed] [Google Scholar]
  22. Staehelin M., Rogg H., Baguley B. C., Ginsberg T., Wehrli W. Structure of a mammalian serine tRNA. Nature. 1968 Sep 28;219(5161):1363–1365. doi: 10.1038/2191363a0. [DOI] [PubMed] [Google Scholar]
  23. Takemura S., Mizutani T., Miyazaki M. The primary structure of valine-I transfer ribonucleic acid from Torulopsis utilis. J Biochem. 1968 Feb;63(2):277–278. doi: 10.1093/oxfordjournals.jbchem.a128772. [DOI] [PubMed] [Google Scholar]
  24. Takemura S., Murakami M., Miyazaki M. Nucleotide sequence of isoleucine transfer RNA from Torulopsis utilis. J Biochem. 1969 Mar;65(3):489–491. doi: 10.1093/oxfordjournals.jbchem.a129040. [DOI] [PubMed] [Google Scholar]
  25. Yamazaki A., Kumashiro I., Takenishi T. Synthesis of guanosine and its derivatives from 5-amino-1-beta-D-ribofuranosyl-4-imidazolecarboxamide. II. Ring closure with sodium methylxanthate. J Org Chem. 1967 Oct;32(10):3032–3038. doi: 10.1021/jo01285a021. [DOI] [PubMed] [Google Scholar]
  26. Yaniv M., Barrell B. G. Nucleotide sequence of E. coli B tRNA1-Val. Nature. 1969 Apr 19;222(5190):278–279. doi: 10.1038/222278a0. [DOI] [PubMed] [Google Scholar]
  27. Zachau H. G., Dütting D., Feldmann H., Melchers F., Karau W. Serine specific transfer ribonucleic acids. XIV. Comparison of nucleotide sequences and secondary structure models. Cold Spring Harb Symp Quant Biol. 1966;31:417–424. doi: 10.1101/sqb.1966.031.01.054. [DOI] [PubMed] [Google Scholar]
  28. Zachau H. G., Dütting D., Feldmann H. The structures of two serine transfer ribonucleic acids. Hoppe Seylers Z Physiol Chem. 1966;347(4):212–235. doi: 10.1515/bchm2.1966.347.1.212. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES