Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Jun;66(2):523–530. doi: 10.1073/pnas.66.2.523

Studies on the Formation of Transfer Ribonucleic Acid-Ribosome Complexes, XII. Phenylalanyl-Oligonucleotide Binding to E. coli Ribosomes: Necessity for a Free Amino Group

Tokutaro Hishizawa 1, James L Lessard 1, Sidney Pestka 1,*
PMCID: PMC283076  PMID: 4915888

Abstract

The binding of phenylalanyl-oligonucleotide, C-A-C-C-A-(Phe), to ribosomes requires the presence of a free amino group on the amino acid. Acetylation of the amino acid reduces the binding to ribosomes to about 1/20 of the binding observed with the intact Phe-oligonucleotide. Deacylation of the phenylalanyl-oligonucleotide eliminates binding of the free amino acid and markedly reduces the binding of the oligonucleotide (C-A-C-C-A). Neither 30S nor 50S subunits alone are sufficient for binding of the phenylalanyl-oligonucleotide; the presence of both subunits is necessary. The data suggest that phenylalanyl-oligonucleotide binding to ribosomes represents the binding of the aminoacyl-terminus of phenylalanyl-tRNA and that the presence of an amino acid with an unsubstituted amino group attached to the oligonucleotide (C-A-C-C-A) is required for binding to this potassium-dependent site. Furthermore, the ribosome itself has the capability of distinguishing between aminoacyl-oligonucleotides with N-substituted and unsubstituted amino acids-

Full text

PDF
523

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
  2. Craven G. R., Voynow P., Hardy S. J., Kurland C. G. The ribosomal proteins of Escherichia coli. II. Chemical and physical characterization of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2906–2915. doi: 10.1021/bi00835a032. [DOI] [PubMed] [Google Scholar]
  3. Dickerman H. W., Steers E., Jr, Redfield B. G., Weissbach H. Methionyl soluble ribonucleic acid transformylase. I. Purification and partial characterization. J Biol Chem. 1967 Apr 10;242(7):1522–1525. [PubMed] [Google Scholar]
  4. Dube S. K., Marcker K. A., Clark B. F., Cory S. Nucleotide sequence of N-formyl-methionyl-transfer RNA. Nature. 1968 Apr 20;218(5138):232–233. doi: 10.1038/218232a0. [DOI] [PubMed] [Google Scholar]
  5. Gillam I., Blew D., Warrington R. C., von Tigerstrom M., Tener G. M. A general procedure for the isolation of specific transfer ribonucleic acids. Biochemistry. 1968 Oct;7(10):3459–3468. doi: 10.1021/bi00850a022. [DOI] [PubMed] [Google Scholar]
  6. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  7. Grollman A. P., Stewart M. L. Inhibition of the attachment of messenger ribonucleic acid to ribosomes. Proc Natl Acad Sci U S A. 1968 Oct;61(2):719–725. doi: 10.1073/pnas.61.2.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haenni A. L., Chapeville F. The behaviour of acetylphenylalanyl soluble ribonucleic acid in polyphenylalanine synthesis. Biochim Biophys Acta. 1966 Jan 18;114(1):135–148. doi: 10.1016/0005-2787(66)90261-9. [DOI] [PubMed] [Google Scholar]
  9. Kellogg D. A., Doctor B. P., Loebel J. E., Nirenberg M. W. RNA codons and protein synthesis. IX. Synonym codon recognition by multiple species of valine-, alanine-, and methionine-sRNA. Proc Natl Acad Sci U S A. 1966 Apr;55(4):912–919. doi: 10.1073/pnas.55.4.912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Monro R. E., Celma M. L., Vazquez D. Action of sparsomycin on ribosome-catalysed peptidyl transfer. Nature. 1969 Apr 26;222(5191):356–358. doi: 10.1038/222356a0. [DOI] [PubMed] [Google Scholar]
  11. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  12. Pestka S., Nirenberg M. Regulatory mechanisms and protein synthesis. X. Codon recognition on 30 S ribosomes. J Mol Biol. 1966 Oct 28;21(1):145–171. doi: 10.1016/0022-2836(66)90085-4. [DOI] [PubMed] [Google Scholar]
  13. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 3. The formation of peptide bonds by ribosomes in the absence of supernatant enzymes. J Biol Chem. 1968 May 25;243(10):2810–2820. [PubMed] [Google Scholar]
  14. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Arch Biochem Biophys. 1970 Jan;136(1):80–88. doi: 10.1016/0003-9861(70)90329-2. [DOI] [PubMed] [Google Scholar]
  15. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. I. The effect of streptomycin and ribosomal dissociation on 14-C-aminoacyl transfer ribonucleic acid binding to ribosomes. J Biol Chem. 1966 Jan 25;241(2):367–372. [PubMed] [Google Scholar]
  16. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. VII. The role of the 3'-hydroxyl-terminal end of transfer ribonucleic acid for interaction with ribosomes and ribosomal subunits. J Biol Chem. 1970 Mar 25;245(6):1497–1503. [PubMed] [Google Scholar]
  17. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. X. Phenylalanyl-oligonucleotide binding to ribosomes and the mechanism of chloramphenicol action. Biochem Biophys Res Commun. 1969 Aug 15;36(4):589–595. doi: 10.1016/0006-291x(69)90345-3. [DOI] [PubMed] [Google Scholar]
  18. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. XI. Antibiotic effects on phenylalanyl-oligonucleotide binding to ribosomes. Proc Natl Acad Sci U S A. 1969 Oct;64(2):709–714. doi: 10.1073/pnas.64.2.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pestka S. Translocation, aminoacryl-oligonucleotides, and antibiotic action. Cold Spring Harb Symp Quant Biol. 1969;34:395–410. doi: 10.1101/sqb.1969.034.01.046. [DOI] [PubMed] [Google Scholar]
  20. Uziel M., Gassen H. G. Phenylalanine transfer ribonucleic acid from Escherichia coli B. Isolation and characterization of oligonucleotides from ribonuclease T-1 and ribonuclease A hydrolysates. Biochemistry. 1969 Apr;8(4):1643–1655. doi: 10.1021/bi00832a046. [DOI] [PubMed] [Google Scholar]
  21. Yarmolinsky M. B., Haba G. L. INHIBITION BY PUROMYCIN OF AMINO ACID INCORPORATION INTO PROTEIN. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1721–1729. doi: 10.1073/pnas.45.12.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zamir A., Miskin R., Elson D. Interconversions between inactive and active forms of ribosomal subunits. FEBS Lett. 1969 Apr;3(1):85–88. doi: 10.1016/0014-5793(69)80103-1. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES