Abstract
Base selection by the Qβ-replicase and E. coli transcriptase has been studied using substrate analogs. Six analogs with normal hydrogen-bonding sites were polymerized by both enzymes. Three analogs containing ring substitutions which affect the conformation at the glycosyl bond would not substitute for their normal congeners. The remaining analog was an excellent substrate for the transcriptase but not the replicase.
The results imply that the base selection procedure has stringent requirements for substrate conformation. Part of the restriction may derive from the requirement that template and substrates conform to the stereochemical constraints of a double helix.
In the Qβ-replicase reaction, synthesis in the presence of substrate analogs displayed abortive kinetics, implying that the replicase reaction can be uniquely curtailed by substrate analogs.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bessman M. J., Lehman I. R., Adler J., Zimmerman S. B., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. III. THE INCORPORATION OF PYRIMIDINE AND PURINE ANALOGUES INTO DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):633–640. doi: 10.1073/pnas.44.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop D. H., Mills D. R., Spiegelman S. The sequence at the 5' terminus of a self-replicating variant of viral Q-beta ribonucleic acid. Biochemistry. 1968 Oct;7(10):3744–3753. doi: 10.1021/bi00850a056. [DOI] [PubMed] [Google Scholar]
- Bugg C. E., Thewalt U. Effects of halogen substituents on base stacking in nucleic acid components: the crystal structure of 8-bromoguanosine. Biochem Biophys Res Commun. 1969 Nov 6;37(4):623–629. doi: 10.1016/0006-291x(69)90855-9. [DOI] [PubMed] [Google Scholar]
- CHAMBERLIN M., BERG P. Deoxyribo ucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1962 Jan 15;48:81–94. doi: 10.1073/pnas.48.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cerami A., Reich E., Ward D. C., Goldberg I. H. The interaction of actinomycin with DNA: requirement for the 2-amino group of purines. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1036–1042. doi: 10.1073/pnas.57.4.1036. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DONOHUE J., TRUEBLOOD K. N. Base pairing in DNA. J Mol Biol. 1960 Dec;2:363–371. doi: 10.1016/s0022-2836(60)80047-2. [DOI] [PubMed] [Google Scholar]
- De Wachter R., Fiers W. Sequences at the 5'-terminus of bacteriophage Q-beta-RNA. Nature. 1969 Jan 18;221(5177):233–235. doi: 10.1038/221233a0. [DOI] [PubMed] [Google Scholar]
- Feix G., Pollet R., Weissmann C. Replication of viral RNA, XVI. Enzymatic synthesis of infectious virual RNA with noninfectious Q-beta minus strands as template. Proc Natl Acad Sci U S A. 1968 Jan;59(1):145–152. doi: 10.1073/pnas.59.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HARUNA I., NOZU K., OHTAKA Y., SPIEGELMAN S. AN RNA "REPLICASE" INDUCED BY AND SELECTIVE FOR A VIRAL RNA: ISOLATION AND PROPERTIES. Proc Natl Acad Sci U S A. 1963 Nov;50:905–911. doi: 10.1073/pnas.50.5.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haruna I., Spiegelman S. Specific template requirments of RNA replicases. Proc Natl Acad Sci U S A. 1965 Aug;54(2):579–587. doi: 10.1073/pnas.54.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hori K., Eoyang L., Banerjee A. K., August J. T. Replication of RNA viruses. V. Template activity of synthetic ribopolymers in the Q-beta RNA polymerase reaction. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1790–1797. doi: 10.1073/pnas.57.6.1790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- INMAN R. B., BALDWIN R. L. HELIX--RANDOM COIL TRANSITIONS IN DNA HOMOPOLYMER PAIRS. J Mol Biol. 1964 Apr;8:452–469. doi: 10.1016/s0022-2836(64)80003-6. [DOI] [PubMed] [Google Scholar]
- KAHAN F. M., HURWITZ J. The role of deoxyribonucleic acid in ribonucleic acid synthesis. IV. The incorporation of pyrimidine and purine analogues into ribonucleic acid. J Biol Chem. 1962 Dec;237:3778–3785. [PubMed] [Google Scholar]
- Kapuler A. M., Ward D. C., Mendelsohn N., Klett H., Acs G. Utilization of substrate analogs by mengovirus induced RNA polymerase. Virology. 1969 Apr;37(4):701–706. doi: 10.1016/0042-6822(69)90295-5. [DOI] [PubMed] [Google Scholar]
- Klett R. P., Cerami A., Reich E. Exonuclease VI, a new nuclease activity associated with E. coli DNA polymerase. Proc Natl Acad Sci U S A. 1968 Jul;60(3):943–950. doi: 10.1073/pnas.60.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roy-Burman P., Roy-Burman S., Visser D. W. Utilization of 5,6-dihydrouridine 5'-triphosphate in the reaction catalyzed by Escherichia coli RNA polymerase. Biochim Biophys Acta. 1967 Jul 18;142(2):355–367. doi: 10.1016/0005-2787(67)90618-1. [DOI] [PubMed] [Google Scholar]
- Roy-Burman S., Roy-Burman P., Visser D. W. Inhibition of ribonucleic acid polymerase by 5-hydroxyuridine 5'-triphosphate. J Biol Chem. 1966 Feb 25;241(4):781–786. [PubMed] [Google Scholar]
- Schweizer M. P., Broom A. D., Ts'o P. O., Hollis D. P. Studies of inter- and intramolecular interaction in mononucleotides by proton magnetic resonance. J Am Chem Soc. 1968 Feb 14;90(4):1042–1055. doi: 10.1021/ja01006a035. [DOI] [PubMed] [Google Scholar]
- Shapiro L., August J. T. Replication of RNA viruses. 3. Utilization of ribonucleotide analogs in the reaction catalyzed by a RNA virus RNA polymerase. J Mol Biol. 1965 Nov;14(1):214–220. doi: 10.1016/s0022-2836(65)80241-8. [DOI] [PubMed] [Google Scholar]
- Slapikoff S., Berg P. Mechanism of ribonucleic acid polymerase action. Effect of nearest neighbors on competition between uridine triphosphate and uridine triphosphate analogs for incorporation into ribonucleic acid. Biochemistry. 1967 Dec;6(12):3654–3658. doi: 10.1021/bi00864a006. [DOI] [PubMed] [Google Scholar]
- Spiegelman S., Haruna I., Holland I. B., Beaudreau G., Mills D. The synthesis of a self-propagating and infectious nucleic acid with a purified enzyme. Proc Natl Acad Sci U S A. 1965 Sep;54(3):919–927. doi: 10.1073/pnas.54.3.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiegelman S., Pace N. R., Mills D. R., Levisohn R., Eikhom T. S., Taylor M. M., Peterson R. L., Bishop D. H. The mechanism of RNA replication. Cold Spring Harb Symp Quant Biol. 1968;33:101–124. doi: 10.1101/sqb.1968.033.01.015. [DOI] [PubMed] [Google Scholar]
- Suhadolnik R. J., Uematsu T., Uematsu H., Wilson R. G. The incorporation of sangivamycin 5'-triphosphate into polyribonucleotide by ribonucleic acid polymerase from Micrococcus lysodeikticus. J Biol Chem. 1968 May 25;243(10):2761–2766. [PubMed] [Google Scholar]
- WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
- Ward D. C., Reich E. Conformational properties of polyformycin: a polyribonucleotide with individual residues in the syn conformation. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1494–1501. doi: 10.1073/pnas.61.4.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]