Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Jul;66(3):753–757. doi: 10.1073/pnas.66.3.753

Controlled Deamidation of Peptides and Proteins: An Experimental Hazard and a Possible Biological Timer*

Arthur B Robinson 1,, James H McKerrow 1, Paul Cary 1
PMCID: PMC283114  PMID: 5269237

Abstract

Experiments on model peptides show that the rate of deamidation of asparaginyl residues depends strongly on the nature of neighboring residues. The natural distribution of glutaminyl and asparaginyl residues is ordered with respect to the biological lifetime of the peptides and the functional groups of the residues neighboring to glutaminyl and asparaginyl residues. The rates of deamidation of such amide peptides under physiological conditions could serve as useful timers of development and aging.

Full text

PDF
753

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chibnall A. C., Westall R. G. The estimation of glutamine in the presence of asparagine. Biochem J. 1932;26(1):122–132. doi: 10.1042/bj0260122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FLETCHER M. J., SANADI D. R. Turnover of rat-liver mitochondria. Biochim Biophys Acta. 1961 Aug 5;51:356–360. doi: 10.1016/0006-3002(61)90177-9. [DOI] [PubMed] [Google Scholar]
  3. Flatmark T. Multiple molecular forms of bovine heart cytochrome c. V. A comparative study of their physicochemical properties and their reactions in biological systems. J Biol Chem. 1967 May 25;242(10):2454–2459. [PubMed] [Google Scholar]
  4. Flatmark T. On the heterogeneity of beef heart cytochrome c. 3. A kinetic study of the non-enzymic deamidation of the main subfractions (Cy I-Cy 3). Acta Chem Scand. 1966;20(6):1487–1496. doi: 10.3891/acta.chem.scand.20-1487. [DOI] [PubMed] [Google Scholar]
  5. Flatmark T., Sletten K. Multiple forms of cytochrome c in the rat. Precursor-product relationship between the main component Cy I and the minor components Cy II and Cy 3 in vivo. J Biol Chem. 1968 Apr 10;243(7):1623–1629. [PubMed] [Google Scholar]
  6. KELLER P. J., COHEN E., NEURATH H. The proteins of bovine pancreatic juice. II. Rates of synthesis in vivo of the cationic proteins. J Biol Chem. 1959 Feb;234(2):311–315. [PubMed] [Google Scholar]
  7. Lenard J., Robinson A. B. Use of hydrogen fluoride in Merrifield solid-phase peptide synthesis. J Am Chem Soc. 1967 Jan 4;89(1):181–182. doi: 10.1021/ja00977a057. [DOI] [PubMed] [Google Scholar]
  8. MORRIS A. J., DICKMAN S. R. Biosynthesis of ribonuclease in mouse pancreas. J Biol Chem. 1960 May;235:1404–1408. [PubMed] [Google Scholar]
  9. Marglin A., Merrifield R. B. The synthesis of bovine insulin by the solid phase method. J Am Chem Soc. 1966 Nov 5;88(21):5051–5052. doi: 10.1021/ja00973a068. [DOI] [PubMed] [Google Scholar]
  10. Piha R. S., Cuénod M., Waelsch H. Metabolism of histones of brain and liver. J Biol Chem. 1966 May 25;241(10):2397–2404. [PubMed] [Google Scholar]
  11. VELICK S. F. The metabolism of myosin, the meromyosins, actin and tropomyosin in the rabbit. Biochim Biophys Acta. 1956 Apr;20(1):228–236. doi: 10.1016/0006-3002(56)90281-5. [DOI] [PubMed] [Google Scholar]
  12. Vickery H. B., Pucher G. W., Clark H. E. The determination of glutamine in the presence of asparagine. Biochem J. 1935 Dec;29(12):2710–2720. doi: 10.1042/bj0292710. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES