Abstract
Among 60 ultraviolet-induced missense mutations of the structural genes that code for mitochondrial malate dehydrogenase (M-MDH, EC 1.1.1.37) of Neurospora crassa, two enzyme phenotypes are observed. In a previously described class (C-mutants), M-MDH is malfunctional because of an abnormal conformation induced by association with mitochondria. We describe here a second class (K-mutants) in which the enzyme is malfunctional because of an altered subcellular location. Thus, although both classes cause lesions in the assimilation of exogenous malate, the nature of the lesions differs. In C-mutants, the enzyme misfunctions because of low affinity for malate but remains mitochondrial-bound as in wild-type. Conversely, K-mutant M-MDH is dispersed throughout the cytoplasm.
Studies of a repressible „glyoxysome” isozyme and a constitutive M-MDH of prototroph and mutants indicate that both isozymes are encoded by the same nuclear structural genes and have polypeptide subunits in common.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Byington K. H., Smoly J. M., Morey A. V., Green D. E. On the fragmentation of mitochondria by diethylstilbesterol. I. Conditions for maximizing fragmentation. Arch Biochem Biophys. 1968 Dec;128(3):762–773. doi: 10.1016/0003-9861(68)90085-4. [DOI] [PubMed] [Google Scholar]
- Davidson R. G., Cortner J. A. Genetic variant of human erythrocyte malate dehydrogenase. Nature. 1967 Aug 12;215(5102):761–762. doi: 10.1038/215761a0. [DOI] [PubMed] [Google Scholar]
- Davidson R. G., Cortner J. A. Mitochondrial malate dehydrogenase: a new genetic polymorphism in man. Science. 1967 Sep 29;157(3796):1569–1571. doi: 10.1126/science.157.3796.1569. [DOI] [PubMed] [Google Scholar]
- Henson C. P., Perlman P., Weber C. N., Mahler H. R. Formation of yeast mitochondria. II. Effects of antibiotics on enzyme activity during derepression. Biochemistry. 1968 Dec;7(12):4445–4454. doi: 10.1021/bi00852a041. [DOI] [PubMed] [Google Scholar]
- Kobr M. J., Vanderhaeghe F., Combépine G. Particulate enzymes of the glyoxylate cycle in Neurospora crassa. Biochem Biophys Res Commun. 1969 Nov 6;37(4):640–645. doi: 10.1016/0006-291x(69)90858-4. [DOI] [PubMed] [Google Scholar]
- Korn E. D. Cell membranes: structure and synthesis. Annu Rev Biochem. 1969;38:263–288. doi: 10.1146/annurev.bi.38.070169.001403. [DOI] [PubMed] [Google Scholar]
- Kulick R. J., Barnes F. W. Heterogeneity of supernatant malate dehydrogenase. Biochim Biophys Acta. 1968 Aug 27;167(1):1–8. doi: 10.1016/0005-2744(68)90272-6. [DOI] [PubMed] [Google Scholar]
- Longo G. P., Scandalios J. G. Nuclear gene control of mitochondrial malic dehydrogenase in maize. Proc Natl Acad Sci U S A. 1969 Jan;62(1):104–111. doi: 10.1073/pnas.62.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUNKRES K. D., RICHARDS F. M. GENETIC ALTERATION OF NEUROSPORA MALATE DEHYDROGENASE. Arch Biochem Biophys. 1965 Mar;109:457–465. doi: 10.1016/0003-9861(65)90390-5. [DOI] [PubMed] [Google Scholar]
- McKay R., Druyan R., Getz G. S., Rabinowitz M. Intramitochondrial localization of delta-aminolaevulate synthetase and ferrochelatase in rat liver. Biochem J. 1969 Sep;114(3):455–461. doi: 10.1042/bj1140455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munkres K. D. Genetic and epigenetic forms of malate dehydrogenase in Neurospora. Ann N Y Acad Sci. 1968 Jun 14;151(1):294–306. doi: 10.1111/j.1749-6632.1968.tb11897.x. [DOI] [PubMed] [Google Scholar]
- Munkres K. D., Woodward D. O. Interaction of Neurospora mitochondrial structural protein with other proteins and coenzyme nucleotides. Biochim Biophys Acta. 1967 Jan 18;133(1):143–150. doi: 10.1016/0005-2795(67)90046-3. [DOI] [PubMed] [Google Scholar]
- Munkres K. D., Woodward D. O. On the genetics of enzyme locational specificity. Proc Natl Acad Sci U S A. 1966 May;55(5):1217–1224. doi: 10.1073/pnas.55.5.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shows T. B., Ruddle F. H. Malate dehydrogenase: evidence for tetrameric structure in Mus musculus. Science. 1968 Jun 21;160(3834):1356–1357. doi: 10.1126/science.160.3834.1356. [DOI] [PubMed] [Google Scholar]
- Siegel L. The effect of inorganic ions on the structure and function of mitochondrial malic dehydrogenase from bovine heart muscle. Biochemistry. 1967 Jul;6(7):2261–2267. doi: 10.1021/bi00859a049. [DOI] [PubMed] [Google Scholar]
- Woodward D. O., Munkres K. D. Alterations of a maternally inherited mitochondrial structural protein in respiratory-deficient strains of Neurospora. Proc Natl Acad Sci U S A. 1966 Apr;55(4):872–880. doi: 10.1073/pnas.55.4.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zahler W. L., Saito A., Fleischer S. Removal of structural protein from mitochondria. Biochem Biophys Res Commun. 1968 Aug 13;32(3):512–518. doi: 10.1016/0006-291x(68)90692-x. [DOI] [PubMed] [Google Scholar]
- Zee D. S., Zinkham W. H. Malate dehydrogenase in Ascaris suum: characterization, ontogeny, and genetic control. Arch Biochem Biophys. 1968 Aug;126(2):574–584. doi: 10.1016/0003-9861(68)90444-x. [DOI] [PubMed] [Google Scholar]