Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Oct;67(2):477–484. doi: 10.1073/pnas.67.2.477

Role of Phosphorylation Coupling Factor in Light-Dependent Proton Translocation by Rhodopseudomonas capsulata Membrane Preparations*

Bruno A Melandri 1,2,, Assunta Baccarini-Melandri 1,2,, Anthony San Pietro 1,2, Howard Gest 1,2
PMCID: PMC283232  PMID: 5002093

Abstract

The activity of the light-dependent proton pump (in the absence of phosphorylation substrates) of Rhodopseudomonas capsulata „membrane vesicles,” in contrast to that of chloroplasts, is not appreciably affected by detachment of phosphorylation coupling factor(s). Proton uptake by such „uncoupled” (low phosphorylation activity) preparations is also unaffected by the addition of phosphorylation substrates (ADP + arsenate + Mg2+). The H+ pump of „coupled” preparations, however, is stimulated when all of the substrates are present simultaneously. Oligomycin appears to affect both photophosphorylation and the H+ pump by interaction with a component of the energy transfer sequence that is distinct from coupling factor. The results obtained suggest that in photosynthetic bacteria light-dependent cyclic electron flow (the driving force for photophosphorylation) is accelerated by active phosphorylation which, in turn, is dependent on the presence of protein coupling factors in the energy-converting membrane.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M. Photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 May 20;40:257–272. doi: 10.1016/0006-3002(60)91350-0. [DOI] [PubMed] [Google Scholar]
  2. Baccarini-Melandri A., Gest H., Pietro A. S. A coupling factor in bacterial photophosphorylation. J Biol Chem. 1970 Mar 10;245(5):1224–1226. [PubMed] [Google Scholar]
  3. CLAYTON R. K. TOWARD THE ISOLATION OF A PHOTOCHEMICAL REACTION CENTER IN RHODOPSEUDOMONAS SPHEROIDES. Biochim Biophys Acta. 1963 Nov 29;75:312–323. doi: 10.1016/0006-3002(63)90618-8. [DOI] [PubMed] [Google Scholar]
  4. Dilley R. A., Shavit N. On the relationship of H+ transport to photophosphorylation in spinach chloroplasts. Biochim Biophys Acta. 1968 Jul 16;162(1):86–96. doi: 10.1016/0005-2728(68)90217-x. [DOI] [PubMed] [Google Scholar]
  5. Dilley R. A. The effect of various energy-conversion states of chloroplasts on proton and electron transport. Arch Biochem Biophys. 1970 Mar;137(1):270–283. doi: 10.1016/0003-9861(70)90434-0. [DOI] [PubMed] [Google Scholar]
  6. Kagawa Y., Racker E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 8. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphatase. J Biol Chem. 1966 May 25;241(10):2461–2466. [PubMed] [Google Scholar]
  7. Keister D. L., Yike N. J. Energy-linked reactions in photosynthetic bacteria. I. Succinatelinked ATP-driven NAD reduction by Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1967 Aug;121(2):415–422. doi: 10.1016/0003-9861(67)90095-1. [DOI] [PubMed] [Google Scholar]
  8. Klemme J. H. Studies on the mechanism of NAD-photoreduction by chromatophores of the facultative phototroph, Rhodopseudomonas capsulata. Z Naturforsch B. 1969 Jan;24(1):67–76. doi: 10.1515/znb-1969-0117. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lynn W. S., Straub K. D. Isolation and properties of a protein from chloroplasts required for phosphorylation and H+ uptake. Biochemistry. 1969 Dec;8(12):4789–4793. doi: 10.1021/bi00840a021. [DOI] [PubMed] [Google Scholar]
  11. MacLennan D. H., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry. 1968 Apr;7(4):1603–1610. doi: 10.1021/bi00844a050. [DOI] [PubMed] [Google Scholar]
  12. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  13. Mitchell P. Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells. Fed Proc. 1967 Sep;26(5):1370–1379. [PubMed] [Google Scholar]
  14. Nishimura M., Kadota K., Chance B. Light-induced electron transfer, internal and external hydrogen ion changes, and phosphorylation in chromatophores of Rhodospirillum rubrum. Arch Biochem Biophys. 1968 Apr;125(1):308–317. doi: 10.1016/0003-9861(68)90666-8. [DOI] [PubMed] [Google Scholar]
  15. Scholes P., Mitchell P., Moyle J. The polarity of proton translocation in some photosynthetic microorganisms. Eur J Biochem. 1969 Apr;8(3):450–454. doi: 10.1111/j.1432-1033.1969.tb00548.x. [DOI] [PubMed] [Google Scholar]
  16. Uribe E. G., Jagendorf A. T. Membrane permeability and internal volume as factors in ATP synthesis by spinach chloroplasts. Arch Biochem Biophys. 1968 Nov;128(2):351–359. doi: 10.1016/0003-9861(68)90041-6. [DOI] [PubMed] [Google Scholar]
  17. von Stedingk L. V., Baltscheffsky H. The light-induced, reversible pH change in chromatophores from Rhodospirillum rubrum. Arch Biochem Biophys. 1966 Nov;117(2):400–404. doi: 10.1016/0003-9861(66)90428-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES