Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Oct;67(2):572–578. doi: 10.1073/pnas.67.2.572

Conformation and displacement in muscle contraction.

M F Morales
PMCID: PMC283245  PMID: 4256990

Full text

PDF
572

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson J. F., Morales M. F. Polarization of tryptophan fluorescence in muscle. Biochemistry. 1969 Nov;8(11):4517–4522. doi: 10.1021/bi00839a044. [DOI] [PubMed] [Google Scholar]
  2. Cheung H. C. Conformation of myosin. Effects of substrate and modifiers. Biochim Biophys Acta. 1969 Dec 23;194(2):478–485. doi: 10.1016/0005-2795(69)90108-1. [DOI] [PubMed] [Google Scholar]
  3. Cheung H. C., Morales M. F. Studies of myosin conformation by fluorescent techniques. Biochemistry. 1969 May;8(5):2177–2182. doi: 10.1021/bi00833a059. [DOI] [PubMed] [Google Scholar]
  4. Cooke R., Morales M. F. Spin-label studies of glycerinated muscle fibers. Biochemistry. 1969 Aug;8(8):3188–3194. doi: 10.1021/bi00836a009. [DOI] [PubMed] [Google Scholar]
  5. Cooke R., Morales M. F. Spin-label studies of glycerinated muscle fibers. Biochemistry. 1969 Aug;8(8):3188–3194. doi: 10.1021/bi00836a009. [DOI] [PubMed] [Google Scholar]
  6. Duke J. A., McKay R., Botts J. Conformational change accompanying modification of myosin ATPase. Biochim Biophys Acta. 1966 Nov 8;126(3):600–603. doi: 10.1016/0926-6585(66)90022-7. [DOI] [PubMed] [Google Scholar]
  7. Elliott G. F., Rome E. M., Spencer M. A type of contraction hypothesis applicable to all muscles. Nature. 1970 May 2;226(5244):417–420. doi: 10.1038/226417a0. [DOI] [PubMed] [Google Scholar]
  8. Imamura K., Duke J. A., Morales M. Studies on myosin catalysis and modification. Arch Biochem Biophys. 1970 Feb;136(2):452–466. doi: 10.1016/0003-9861(70)90217-1. [DOI] [PubMed] [Google Scholar]
  9. Lowey S., Goldstein L., Cohen C., Luck S. M. Proteolytic degradation of myosin and the meromyosins by a water-insoluble polyanionic derivative of trypsin: properties of a helical subunit isolated from heavy meromyosin. J Mol Biol. 1967 Feb 14;23(3):287–304. doi: 10.1016/s0022-2836(67)80106-2. [DOI] [PubMed] [Google Scholar]
  10. MORALES M., BOTTS J. A model for the elementary process in muscle action. Arch Biochem Biophys. 1952 Jun;37(2):283–300. doi: 10.1016/0003-9861(52)90193-8. [DOI] [PubMed] [Google Scholar]
  11. Morita F., Yagi K. Spectral shift in heavy-meromyosin induced by substrate. Biochem Biophys Res Commun. 1966 Feb 3;22(3):297–302. doi: 10.1016/0006-291x(66)90481-5. [DOI] [PubMed] [Google Scholar]
  12. Murphy A. J., Duke J. A., Stowring L. Synthesis of 6-mercapto-9-beta-D-ribofuranosylpurine 5'-triphosphate, a sulfhydryl analog of ATP. Arch Biochem Biophys. 1970 Mar;137(1):297–298. doi: 10.1016/0003-9861(70)90441-8. [DOI] [PubMed] [Google Scholar]
  13. Murphy A. J., Morales M. F. Number and location of adenosine triphosphatase sites of myosin. Biochemistry. 1970 Mar 31;9(7):1528–1532. doi: 10.1021/bi00809a008. [DOI] [PubMed] [Google Scholar]
  14. Rome E. Light and X-ray diffraction studies of the filament lattice of glycerol-extracted rabbit psoas muscle. J Mol Biol. 1967 Aug 14;27(3):591–602. doi: 10.1016/0022-2836(67)90061-7. [DOI] [PubMed] [Google Scholar]
  15. Slayter H. S., Lowey S. Substructure of the myosin molecule as visualized by electron microscopy. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1611–1618. doi: 10.1073/pnas.58.4.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. YAGI K., MASE R., SAKAKIBARA I., ASAI H. FUNCTION OF HEAVY MEROMYOSIN IN THE ACCELERATION OF ACTIN POLYMERIZATION. J Biol Chem. 1965 Jun;240:2448–2454. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES