Abstract
The glycolipid haptens of Mycoplasma pneumoniae were bound to membrane proteins of acholeplasma laidlawii (formerly Mycoplasma laidlawii) by reaggregation. This process consisted of the solubilization of lipid-depleted A. laidlawii membranes and M. pneumoniae glycolipids in 20 mM sodium dodecyl sulfate, and dialysis of the mixed solutions against 20 mM Mg2+. The hybrid reaggregate, collected by centrifugation, was highly immunogenic in rabbits, eliciting the production of a high titer of antibodies that fixed complement with the purified glycolipids and inhibited the metabolism of M. pneumoniae cells. The free glycolipids, or their mixture with A. laidlawii proteins, were much less effective in stimulating these antibodies. The antibodies to the hybrid reaggregate agglutinated M. pneumoniae cells and inhibited their ability to absorb erythrocytes, which indicates that at least some of the serologically-active glycolipids are exposed at the outer membrane surface. The ability to bind selected membrane lipids to membrane proteins of a serologically unrelated species provides a new tool for producing antibodies to lipid haptens.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAILEY J. S., CLARK H. W., FELTS W. R., FOWLER R. C., BROWN T. M. Antigenic properties of pleuropneumonia-like organisms from tissue cell cultures and the human genital area. J Bacteriol. 1961 Oct;82:542–547. doi: 10.1002/path.1700820236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischer S., Fleischer B., Stoeckenius W. Fine structure of lipid-depleted mitochondria. J Cell Biol. 1967 Jan;32(1):193–208. doi: 10.1083/jcb.32.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hakomori S. I., Murakami W. T. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc Natl Acad Sci U S A. 1968 Jan;59(1):254–261. doi: 10.1073/pnas.59.1.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahane I., Razin S. Immunological analysis of Mycoplasma membranes. J Bacteriol. 1969 Oct;100(1):187–194. doi: 10.1128/jb.100.1.187-194.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenny G. E. Heat-lability and organic solvent-solubility of mycoplasma antigens. Ann N Y Acad Sci. 1967 Jul 28;143(1):676–681. doi: 10.1111/j.1749-6632.1967.tb27713.x. [DOI] [PubMed] [Google Scholar]
- Kenny G. E. Serological comparison of ten glycolytic Mycoplasma species. J Bacteriol. 1969 Jun;98(3):1044–1055. doi: 10.1128/jb.98.3.1044-1055.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nanni G., Casu A., Marinari U. M., Baldini I. Structure of membranes. 3. Antibody production against lipids of sheep erythrocyte membranes. Ital J Biochem. 1969 Jan-Feb;18(1):25–34. [PubMed] [Google Scholar]
- Plackett P., Marmion B. P., Shaw E. J., Lemcke R. M. Immunochemical analysis of Mycoplasma pneumoniae. 3. Separation and chemical identification of serologically active lipids. Aust J Exp Biol Med Sci. 1969 Apr;47(2):171–195. doi: 10.1038/icb.1969.19. [DOI] [PubMed] [Google Scholar]
- Prescott B., Chernick S. S., James W. D., Caldes G., Barker D., Sloan H. R., Chanock R. M. Mycoplasma pneumoniae phosphatidyl glycerol. Proc Soc Exp Biol Med. 1970 Jul;134(3):711–719. doi: 10.3181/00379727-134-34867. [DOI] [PubMed] [Google Scholar]
- Rapport M. M., Graf L. Immunochemical reactions of lipids. Prog Allergy. 1969;13:273–331. [PubMed] [Google Scholar]
- Razin S., Kahane I. Hybridization of solubilized membrane components from different mycoplasma species by reaggregation. Nature. 1969 Aug 23;223(5208):863–864. doi: 10.1038/223863a0. [DOI] [PubMed] [Google Scholar]
- Razin S., Morowitz H. J., Terry T. M. Membrane subunits of Mycoplasma laidlawii and their assembly to membranelike structures. Proc Natl Acad Sci U S A. 1965 Jul;54(1):219–225. doi: 10.1073/pnas.54.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Razin S., Ne'eman Z., Ohad I. Selective reaggregation of solubilized Mycoplasma-membrane proteins and the kinetics of membrane reformation. Biochim Biophys Acta. 1969;193(2):277–293. doi: 10.1016/0005-2736(69)90189-8. [DOI] [PubMed] [Google Scholar]
- Razin S., Prescott B., Caldes G., James W. D., Chanock R. M. Role of Glycolipids and Phosphatidylglycerol in the Serological Activity of Mycoplasma pneumoniae. Infect Immun. 1970 Apr;1(4):408–416. doi: 10.1128/iai.1.4.408-416.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobeslavsky O., Prescott B., Chanock R. M. Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence. J Bacteriol. 1968 Sep;96(3):695–705. doi: 10.1128/jb.96.3.695-705.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somerson N. L., James W. D., Walls B. E., Chanock R. M. Growth of Mycoplasma pneumoniae on a glass surface. Ann N Y Acad Sci. 1967 Jul 28;143(1):384–389. doi: 10.1111/j.1749-6632.1967.tb27680.x. [DOI] [PubMed] [Google Scholar]
- Tal C. The nature of the cell membrane receptor for the agglutination factor present in the sera of tumor patients and pregnant women. Proc Natl Acad Sci U S A. 1965 Nov;54(5):1318–1321. doi: 10.1073/pnas.54.5.1318. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terry T. M., Engelman D. M., Morowitz H. J. Characterization of the plasma membrane of Mycoplasma laidlawii. II. Modes of aggregation of solubilized membrane components. Biochim Biophys Acta. 1967 Jul 3;135(3):391–405. doi: 10.1016/0005-2736(67)90029-6. [DOI] [PubMed] [Google Scholar]
- Tully J. G., Razin S. Physiological and serological comparisons among strains of Mycoplasma granularum and Mycoplasma laidlawii. J Bacteriol. 1968 May;95(5):1504–1512. doi: 10.1128/jb.95.5.1504-1512.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]