Skip to main content
Carcinogenesis logoLink to Carcinogenesis
. 2009 Dec 4;31(3):455–461. doi: 10.1093/carcin/bgp307

PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: results from the Breast and Prostate Cancer Cohort Consortium (BPC3)

Laure Dossus 1,*, Rudolf Kaaks 1, Federico Canzian 1, Demetrius Albanes 1, Sonja I Berndt 1, Heiner Boeing 2, Julie Buring 3, Stephen J Chanock 1, Francoise Clavel-Chapelon 4, Heather Spencer Feigelson 5,6, John M Gaziano 7, Edward Giovannucci 8,9,10, Carlos Gonzalez 11, Christopher A Haiman 12, Göran Hallmans 13, Susan E Hankinson 9, Richard B Hayes 2,14, Brian E Henderson 12, Robert N Hoover 1, David J Hunter 15, Kay-Tee Khaw 16, Laurence N Kolonel 17, Peter Kraft 15, Jing Ma 9, Loic Le Marchand 16, Eiliv Lund 18, Petra HM Peeters 19, Meir Stampfer 9,10, Dan O Stram 12, Gilles Thomas 2,20, Michael J Thun 5, Anne Tjonneland 21, Dimitrios Trichopoulos 10,22, Rosario Tumino 23, Elio Riboli 24, Jarmo Virtamo 25, Stephanie J Weinstein 1, Meredith Yeager 2,26, Regina G Ziegler 1, David G Cox 27
PMCID: PMC2832545  PMID: 19965896

Abstract

Genes involved in the inflammation pathway have been associated with cancer risk. Genetic variants in the interleukin-6 (IL6) and prostaglandin-endoperoxide synthase-2 (PTGS2, encoding for the COX-2 enzyme) genes, in particular, have been related to several cancer types, including breast and prostate cancers. We conducted a study within the Breast and Prostate Cancer Cohort Consortium to examine the association between IL6 and PTGS2 polymorphisms and breast and prostate cancer risk. Twenty-seven polymorphisms, selected by pairwise tagging, were genotyped on 6292 breast cancer cases and 8135 matched controls and 8008 prostate cancer cases and 8604 matched controls. The large sample sizes and comprehensive single nucleotide polymorphism tagging in this study gave us excellent power to detect modest effects for common variants. After adjustment for multiple testing, none of the associations examined remained statistically significant at P = 0.01. In analyses not adjusted for multiple testing, one IL6 polymorphism (rs6949149) was marginally associated with breast cancer risk (TT versus GG, odds ratios (OR): 1.32; 99% confidence intervals (CI): 1.00–1.74, Ptrend = 0.003) and two were marginally associated with prostate cancer risk (rs6969502-AA versus rs6969502-GG, OR: 0.87, 99% CI: 0.75–1.02; Ptrend = 0.002 and rs7805828-AA versus rs7805828-GG, OR: 1.11, 99% CI: 0.99–1.26; Ptrend = 0.007). An increase in breast cancer risk was observed for the PTGS2 polymorphism rs7550380 (TT versus GG, OR: 1.38, 99% CI: 1.04–1.83). No association was observed between PTGS2 polymorphisms and prostate cancer risk. In conclusion, common genetic variation in these two genes might play at best a limited role in breast and prostate cancers.

Introduction

Chronic inflammation has been proposed as an important mechanism involved in the initiation and progression of epithelial tumors by inducing cell division and proliferation, inhibiting apoptosis and promoting angiogenesis (1). Cumulating epidemiological and experimental evidence indicate an implication of chronic inflammation in the development of breast and prostate cancers (25). Proliferative inflammatory atrophy, a possible precursor of high-grade prostatic intraepithelial neoplasia, and chronic prostatitis have been associated with local elevated proinflammatory cytokine levels within the prostate as well as with the development of prostate cancer (6). Similarly, an increased risk of prostate cancer has been observed among men with a history of sexually transmitted infections, most of these being associated with chronic prostatic inflammation (7). Regarding breast cancer, it has been hypothesized that a peritumoral inflammatory infiltrate might be associated with the tumor development. In vivo studies have shown that, in case of chronic inflammation, breast tumor-associated leukocytes release proinflammatory cytokines and pro-growth factors that activate immune response and enhance tumor promotion (4).

The interleukin-6 (IL-6) plays a major role in the process of inflammation, particularly in the transition from acute to chronic inflammation. During acute inflammation, IL-6 is one of the most potent proinflammatory cytokines, inducing and regulating the production of acute phase proteins. It can also control the extent of the inflammatory response by stimulating the production of anti-inflammatory cytokines. When IL-6 is continuously expressed (i.e. in chronic states of inflammation), it is then exclusively proinflammatory and enhances monocyte recruitment at the site of inflammation (8). IL-6 has been implicated in the proliferation and growth of prostate cancer cells (9). In breast cancer, IL-6 has been shown to inhibit the growth of cancer cells but promote the development of metastases (10).

The COX-2 enzyme is implicated in the conversion of arachidonic acid into prostaglandins that stimulate cell proliferation and angiogenesis. In epidemiological studies, the use of non-steroidal anti-inflammatory drugs, which are known to inhibit COX-2, has been associated with a risk reduction of many cancers (1113), including breast (14) and prostate cancers (15). COX-2 overexpression has been observed in many tumor types, including breast (16) and prostate (17) cancers.

Polymorphisms of genes involved in the inflammatory pathway have been previously associated with cancer. Polymorphisms in the prostaglandin-endoperoxide synthase 2 (PTGS2) gene, which encodes for the COX-2 enzyme, have been, in particular, related to cancers of the breast (1820) and prostate (2124). The gene coding for the inflammatory cytokine IL-6 has also been related to breast cancer in some studies (25,26), but not in others (27,28).

We conducted a study within the Breast and Prostate Cancer Cohort Consortium (BPC3) to examine the association between PTGS2 and IL6 gene variants and breast and prostate cancer risk. BPC3 is a consortium of case–control studies nested within large prospective cohorts.

Materials and methods

Study population

The BPC3 has been described in detail elsewhere (29). Briefly, the consortium includes large well-established cohorts assembled in the USA and Europe that have DNA for genotyping and extensive questionnaire data from cohort members. Written informed consent was obtained from all subjects and each cohort has been approved by the appropriate institutional review board. The breast cancer study includes six case–control studies nested within the following cohorts: the American Cancer Society Cancer Prevention Study II (CPS-II) (30), the European Prospective Investigation into Cancer and Nutrition (EPIC) (31), the Harvard Nurses’ Health Study (NHS) (32) and Women's Health Study (WHS) (33), the Hawaii-Los Angeles Multiethnic Cohort (MEC) (34) and the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) (35). The prostate cancer study includes seven case–control studies nested within these cohorts: CPS-II, the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study (ATBC) (36), EPIC, the Health Professionals Follow-up Study (37), MEC, the Physicians Health Study (PHS) (38) and PLCO.

With the exception of MEC and PLCO, most members of these cohorts are Caucasian. The MEC includes US Caucasians (24% in women and 19% in men), African-Americans (22% in women and 29% in men), Latinos (20% in women and 28% in men), Japanese (24% in women and 21% in men) and native Hawaiians (11% in women and 3% in men). The PLCO includes US Caucasians (90% in women and 86% in men), African-Americans (4% in women and 14% in men) and Asians (4% in women).

Cases were confirmed by medical records, pathology reports and/or linkage with population-based tumor registries. High-stage (stage ≥ T3b, N1 or M1) and high-grade (Gleason score ≥8) prostate cancer cases were classified as aggressive tumors. Advanced breast cancer cases were defined as breast tumors with regional metastases to lymph nodes or other adjacent tissues [‘regional’ by Surveillance, Epidemiology and End Results (SEER) Program staging] or metastases to distant organs (‘distant’ by SEER staging). In addition, for NHS and PLCO, which had used American Joint Committee on Cancer (AJCC) staging guidelines, breast tumors >2 cm in diameter without lymph node involvement or other regional spread (AJCC stage II) were also included. In the various EPIC recruitment centers, due to different coding practices at the cancer registries, codes provided information about either distant metastases only or about local plus distant metastases combined.

Controls were matched to cases by ethnicity and age, and in some cohorts, additional matching criteria were employed (for example, EPIC matched on country of residence). A total of 6292 breast cancer cases and 8135 matched controls and 8008 prostate cancer cases and 8604 matched controls were included in the present analysis. Baseline characteristics of cases and controls included in this study have been described elsewhere (39,40).

SNP selection and genotyping

Single nucleotide polymorphism (SNP) selection was designed to comprehensively capture common genetic variation in the PTGS2 and IL6 gene regions. To this end, we followed a tagging approach. Gene regions were defined as 30 kb upstream of the start of translation and 20 kb downstream of the polyA tail. All polymorphisms in each gene region with minor allele frequency ≥5% in Caucasians from the International HapMap Project (version 22; http://www.hapmap.org) were included. Tagging SNPs were selected with the use of the Tagger program within Haploview (http://www.broad.mit.edu/mpg/haploview/; http://www.broad.mit.edu/mpg/tagger/) (41), using pairwise tagging with a minimum r2 of 0.8 (42).

The 27 SNPs included in this study were genotyped together with 1509 SNPs in the sex steroid and insulin/growth factor pathways. Genotyping in the BPC3 case–control samples was conducted using the GoldenGate assay and Illumina BeadArray™ technology in four laboratories (University of Southern California, Los Angeles, CA; National Cancer Institute, Rockville, MD; Imperial College, London, UK and Harvard School of Public Health, Boston, MA). Thirty CEU (Utah residents with ancestry from northern and western Europe) trios, used by HapMap, were genotyped in all labs to evaluate inter-lab reproducibility. For SNPs passing design, manufacturing and quality control metrics, the concordance was 99.5% (before excluding failed SNPs or samples). Within each study, blinded duplicate samples (∼5%) were also included and concordance of these samples ranged from 97.2–99.9% across studies.

Data filtering and analysis

Any sample where >25% of the 1536 SNPs attempted on the oligo pool assay platform failed was removed from the dataset (3% of subjects in the breast cancer dataset and 2% of subjects in the prostate cancer dataset). In the breast cancer dataset, one SNP (rs7550380) failed genotyping on ≥25% samples in EPIC and one SNP (rs6949149) was monomorphic in CPS-II and NHS. In the prostate cancer dataset, the SNP rs5277 failed genotyping on ≥25% samples in CPS-II, ATBC and PLCO and rs7550380 failed genotyping in EPIC, MEC and PHS. One SNP (rs4648261) showed statistically significant (P < 10−5) deviation from Hardy–Weinberg equilibrium genotype frequencies among CPS-II European-ancestry controls. Analyses on these SNPs were performed excluding subjects from these particular cohorts. No SNP exhibited large differences in European-ancestry allele frequencies across cohorts (fixation index, Fst < 0.02). A summary of SNPs included in the present study with differences in allele frequencies between cohorts and Fst are presented in Table 1.

Table I.

SNP information

Gene chromosome SNP SNP position (hg 18) Region Δafa Fstb
IL6 7 rs6949149 22715682 Intergenic 0.05 0.0054
rs4552807 22717544 Intergenic 0.07 0.0025
rs6969502 22718951 Intergenic 0.05 0.0010
rs6952003 22719230 Intergenic 0.03 0.0010
rs10156056 22720613 Intergenic 0.03 0.0007
rs7776857 22721293 Intergenic 0.05 0.0018
rs7801617 22724607 Intergenic 0.03 0.0017
rs7805828 22725087 Intergenic 0.06 0.0019
rs2056576 22727727 Intergenic 0.04 0.0012
rs12700386 22729534 Intergenic 0.04 0.0009
rs1800795 22733170 5′ flanking region 0.07 0.0030
rs2069840 22735097 Intronic 0.06 0.0013
rs2069861 22738179 3′ flanking region 0.02 0.0012
rs10242595 22740756 Intergenic 0.08 0.0047
rs11766273 22742188 Intergenic 0.02 0.0007
PTGS2 1 rs10911902 184898940 Intergenic 0.05 0.0031
rs4648298 184908305 3′-UTR 0.01 0.0009
rs2206593 184909052 3′-UTR 0.01 0.0003
rs5275 184909681 3′-UTR 0.02 0.0004
rs5277 184914820 Exonic (synonymous) 0.02 0.0006
rs4648261 184915627 Intronic 0.01 0.0006
rs2745557 184915844 Intronic 0.02 0.0003
rs20417 184916944 5′ flanking region 0.03 0.0013
rs689466 184917374 5′ flanking region 0.02 0.0003
rs12042763 184918499 Intergenic 0.02 0.0005
rs7550380 184931128 Intergenic 0.04 0.0025
rs2383529 184935715 Intergenic 0.03 0.0005
a

Maximum difference in allele frequencies for Caucasians between cohorts.

b

Fixation index.

We analyzed the association between cancer risk and genotypes using unconditional logistic regression adjusted for age at diagnosis/selection as control (in 5 year intervals), study and ethnicity. Genotypes were coded either as counts of minor alleles (log-additive model, trend test) or as two indicator variables, one for heterozygotes and one for minor allele homozygotes. Odds ratios (OR) and 99% confidence intervals (99% CI) were calculated. We performed these analyses in all subjects, separately for each study within subjects of European ancestry, and in MEC and PLCO, separately for each ethnicity. Analyses were also conducted separately for various cancer subtypes (aggressive versus indolent tumors for prostate cancer cases and advanced versus non-advanced tumors or estrogen and progesterone receptor positive versus negative tumors for breast cancer cases) and by various subgroups of cancer risk factors such as family history of breast or prostate cancer (at least one first-degree relative diagnosed with breast or prostate cancer versus none), body-mass-index (BMI) (<25, 25–30, 30+) and age at diagnosis (≤ or >65 for prostate cancer cases; ≤ or >55 for breast cancer cases). We tested for heterogeneity in trend odds ratios using I2, a measure of the proportion of variance in log odds ratios (43). Further adjustment for multiple testing at the gene level was performed by multiplying the observed P-value for trend by the effective number of independent tests (Meff) as defined by Gao et al. (44). The number of independent tests was calculated separately for men and women, using white controls only. All possible SNP × SNP interaction models within a gene were analyzed in a log-additive way and likelihood ratio tests of the model with and without interaction terms were performed. All P-values presented are a two-tailed and a multiple testing corrected P-value of <0.01 was considered statistically significant.

Results

Breast cancer

A total of 6292 breast cancer cases and 8135 matched controls were included in the present study. The mean age at diagnosis of the cases was 63.1 years (SD: 8.5 years). Seventy-two percent of cases with available data were non-advanced cases and 82% were estrogen-positive tumors. Seventy-nine percent of the cases and 75% of the controls were postmenopausal and 78% of all women were of European ancestry.

One polymorphism in the IL6 gene (rs6949149) showed an increased risk of breast cancer among homozygotes for the minor allele T (OR: 1.32; 99% CI: 1.00–1.74, Ptrend = 0.003) (Table II). When the analyses were stratified by ethnicity, this effect was significant only among African-American women (OR: 5.77; 99% CI: 1.03–32.51, Ptrend < 0.0001) and the proportion of variation due to heterogeneity between ethnicities was 76% (supplementary Table 1 is available at Carcinogenesis Online). Among other ethnic groups, the effect for this particular SNP was in the same direction but not statistically significant for women of European ancestry (OR: 2.07; 99% CI: 0.63–6.78; Ptrend = 0.06) and Hispanic (OR: 1.70; 99% CI: 0.76–3.83; Ptrend = 0.06). No association with breast cancer risk was observed for rs6949149 among Asians and Hawaiians.

Table II.

Association of IL6 SNPs with breast cancer in the BPC3

SNP Casesa Controlsa OR (99% CI)b Ptrendc Gene-adjusted Ptrendd
rs6949149
    GG 3272 4422 1.00 0.003 0.10
    GT 992 1185 1.12 (0.98–1.29)
    TT 269 299 1.32 (1.00–1.74)
rs4552807
    AA 1913 2466 1.00 0.84 >0.80
    AT 2835 3646 1.04 (0.93–1.16)
    TT 1486 1949 1.01 (0.89–1.15)
rs6969502
    GG 3445 4585 1.00 0.14 >0.80
    GA 2214 2766 1.06 (0.96–1.17)
    AA 585 728 1.06 (0.89–1.25)
rs6952003
    TT 3527 4500 1.00 0.31 >0.80
    TA 2334 3060 0.97 (0.89–1.07)
    AA 385 523 0.94 (0.78–1.13)
rs10156056
    GG 4862 6250 1.00 0.34 >0.80
    GC 1303 1700 0.99 (0.89–1.10)
    CC 106 163 0.83 (0.60–1.16)
rs7776857
    TT 3422 4447 1.00 0.51 >0.80
    TG 2317 3008 1.01 (0.92–1.12)
    GG 513 643 1.05 (0.88–1.24)
rs7801617
    GG 4898 6301 1.00 0.32 >0.80
    GA 1236 1599 0.99 (0.88–1.11)
    AA 122 187 0.83 (0.61–1.14)
rs7805828
    GG 2276 2873 1.00 0.38 >0.80
    GA 2967 3843 0.98 (0.89–1.08)
    AA 1020 1376 0.96 (0.84–1.09)
rs2056576
    CC 3011 3821 1.00 0.40 >0.80
    CT 2596 3381 0.98 (0.89–1.08)
    TT 640 869 0.96 (0.82–1.11)
rs12700386
    CC 4187 5386 1.00 0.65 >0.80
    CG 1811 2415 0.97 (0.88–1.06)
    GG 224 280 1.04 (0.82–1.32)
rs1800795
    GG 2847 3707 1.00 0.66 >0.80
    GC 2523 3324 1.01 (0.91–1.11)
    CC 820 1035 1.03 (0.89–1.19)
rs2069840
    CC 2993 3758 1.00 0.84 >0.80
    CG 2560 3491 0.94 (0.86–1.03)
    GG 686 845 1.05 (0.90–1.22)
rs2069861
    CC 5264 6813 1.00 0.88 >0.80
    CT 947 1229 1.01 (0.89–1.14)
    TT 39 49 1.02 (0.58–1.78)
rs10242595
    GG 2487 3197 1.00 0.71 >0.80
    GA 2645 3446 1.01 (0.92–1.11)
    AA 1138 1474 0.97 (0.84–1.12)
rs11766273
    GG 5550 7222 1.00 0.37 >0.80
    GA 696 871 1.04 (0.90–1.20)
    AA 31 34 1.20 (0.63–2.29)
a

Numbers may not add up to 100% of subjects due to genotyping failure.

b

Unconditional logistic regression adjusted for age at diagnosis/selection as control (in five year intervals), study and ethnicity.

c

P-value for trend before adjustment for multiple testing.

d

P-value for trend after adjustment for multiple testing at the gene level.

In the PTGS2 gene, homozygotes for the T allele of rs7550380 had a statistically significant increased risk of breast cancer (OR: 1.38; 99% CI: 1.04–1.83) (Table III). This effect was slightly stronger in women of European ancestry (OR: 1.55; 99% CI: 0.82–2.95) and 47% of the total variation was due to heterogeneity between ethnicities. The direction of the effect was similar only among Hawaiians (OR: 3.77; 99% CI: 0.31–45.66) (supplementary Table 1 is available at Carcinogenesis Online).

Table III.

Association of PTGS2 SNPs with breast cancer in the BPC3

SNP Casesa Controlsa OR (99% CI)b Ptrendc Gene-adjusted Ptrendd
rs10911902
    CC 4349 5628 1.00 0.72 >0.80
    CT 1726 2215 0.99 (0.90–1.09)
    TT 180 230 0.98 (0.75–1.27)
rs4648298
    TT 6037 7770 1.00 0.17 >0.80
    TC 237 342 0.90 (0.72–1.12)
    CC 1 3 0.38 (0.02–7.64)
rs2206593
    GG 5629 7344 1.00 0.13 >0.80
    GA 625 743 1.12 (0.96–1.29)
    AA 24 36 0.87 (0.44–1.73)
rs5275
    AA 2697 3512 1.00 0.54 >0.80
    AG 2664 3501 0.98 (0.89–1.08)
    GG 772 933 1.06 (0.92–1.23)
rs5277
    CC 4679 5978 1.00 0.37 >0.80
    CG 1443 1939 0.97 (0.87–1.07)
    GG 142 197 0.95 (0.71–1.26)
rs4648261
    CC 5938 7750 1.00 0.07 0.77
    CT 311 348 1.18 (0.96–1.45)
    TT 6 9 0.85 (0.22–3.34)
rs2745557
    GG 4402 5784 1.00 0.18 >0.80
    GA 1671 2091 1.05 (0.95–1.17)
    AA 174 217 1.06 (0.81–1.39)
rs20417
    CC 4394 5694 1.00 0.24 >0.80
    CG 1646 2166 1.00 (0.90–1.10)
    GG 214 232 1.24 (0.96–1.60)
rs689466
    TT 4020 5143 1.00 0.18 >0.80
    TC 1928 2562 0.97 (0.88–1.07)
    CC 299 410 0.90 (0.73–1.12)
rs12042763
    GG 3460 4425 1.00 0.47 >0.80
    GT 2168 2846 0.97 (0.88–1.07)
    TT 375 497 0.98 (0.81–1.18)
rs7550380
    GG 3355 3923 1.00 0.05 0.55
    GT 1320 1540 1.02 (0.91–1.15)
    TT 195 173 1.38 (1.04–1.83)
rs2383529
    AA 3752 4886 1.00 0.85 >0.80
    AG 2101 2698 1.02 (0.92–1.12)
    GG 383 505 0.99 (0.82–1.20)
a

Numbers may not add up to 100% of subjects due to genotyping failure.

b

Unconditional logistic regression adjusted for age at diagnosis/selection as control (in five year intervals), study and ethnicity.

c

P-value for trend before adjustment for multiple testing.

d

P-value for trend after adjustment for multiple testing at the gene level.

No substantial heterogeneity was observed across cohorts or other subgroups (≤55 years versus >55 years at diagnosis; advanced versus non-advanced tumors; estrogen/progesterone receptor positive versus negative tumors; at least one first-degree relative diagnosed with breast cancer versus none; BMI: <25, 25–30, 30+).

Prostate cancer

A total of 8008 prostate cancer cases and 8604 matched controls were included in the study. Seventy-four percent of the subjects were of European origin. The mean age at diagnosis of the cases was 68.4 years (SD: 6.4 years). Aggressive cases represented 35% of the cases with available data on stage of the tumor.

Results for the association between IL6 polymorphisms and prostate cancer risk are presented in Table IV. Under a co-dominant model, the following SNPs were associated with prostate cancer risk: rs6969502 (GA versus GG, OR: 0.92, 99% CI: 0.84–1.00; AA versus GG, OR: 0.87, 99% CI: 0.75–1.02; Ptrend = 0.002) and rs7805828 (GA versus GG, OR: 1.10, 99% CI: 1.00–1.20; AA versus GG, OR: 1.11, 99% CI: 0.99–1.26; Ptrend = 0.007). For rs6969502, a stronger effect was observed among subjects with a family history of prostate cancer (log-additive model, OR: 0.76, 99% CI: 0.61–0.97, Ptrend = 0.003) compared with subjects with no family history of prostate cancer (log-additive model, OR: 0.94, 99% CI: 0.86–1.02, Ptrend = 0.04) and 87% of the total variation was due to heterogeneity between men with and without a family history of prostate cancer (supplementary Table 2 is available at Carcinogenesis Online).

Table IV.

Association of IL6 SNPs with prostate cancer in the BPC3

SNP Casesa Controlsa OR (99% CI)b Ptrendc Gene-adjusted Ptrendd
rs6949149
    GG 5703 6125 1.00 0.04 0.48
    GT 1317 1460 0.93 (0.83–1.05)
    TT 244 276 0.83 (0.64–1.10)
rs4552807
    AA 2372 2626 1.00 0.28 >0.80
    AT 3530 3770 1.04 (0.95–1.16)
    TT 2029 2133 1.05 (0.93–1.19)
rs6969502
    GG 4435 4588 1.00 0.002 0.02
    GA 2810 3136 0.92 (0.84–1.00)
    AA 697 809 0.87 (0.75–1.02)
rs6952003
    TT 4669 5098 1.00 0.16 >0.80
    TA 2825 2987 1.03 (0.95–1.13)
    AA 483 498 1.08 (0.90–1.28)
rs10156056
    GG 6074 6382 1.00 0.02 0.24
    GC 1749 1996 0.92 (0.84–1.02)
    CC 169 203 0.90 (0.69–1.20)
rs7776857
    TT 4332 4726 1.00 0.80 >0.80
    TG 2965 3066 1.05 (0.96–1.15)
    GG 677 787 0.93 (0.79–1.07)
rs7801617
    GG 6052 6430 1.00 0.33 >0.80
    GA 1719 1873 0.99 (0.90–1.10)
    AA 203 268 0.86 (0.68–1.14)
rs7805828
    GG 2922 3306 1.00 0.007 0.08
    GA 3780 3960 1.10 (1.00–1.20)
    AA 1255 1299 1.11 (0.99–1.26)
rs2056576
    CC 3694 4077 1.00 0.31 >0.80
    CT 3430 3546 1.08 (0.99–1.18)
    TT 843 944 1.00 (0.87–1.15)
rs12700386
    CC 5169 5720 1.00 0.07 >0.80
    CG 2528 2529 1.10 (1.02–1.21)
    GG 277 316 0.95 (0.77–1.19)
rs1800795
    GG 3594 3832 1.00 0.10 >0.80
    GC 3218 3402 0.99 (0.90–1.09)
    CC 1125 1274 0.91 (0.80–1.03)
rs2069840
    CC 3866 4333 1.00 0.05 0.60
    CG 3332 3404 1.10 (1.01–1.21)
    GG 776 842 1.04 (0.90–1.20)
rs2069861
    CC 6681 7222 1.00 0.55 >0.80
    CT 1217 1285 1.03 (0.91–1.15)
    TT 46 49 1.05 (0.61–1.77)
rs10242595
    GG 3285 3505 1.00 0.74 >0.80
    GA 3252 3564 0.99 (0.91–1.09)
    AA 1393 1450 1.03 (0.91–1.18)
rs11766273
    GG 7042 7532 1.00 0.08 >0.80
    GA 913 999 0.95 (0.83–1.06)
    AA 40 59 0.67 (0.39–1.14)
a

Numbers may not add up to 100% of subjects due to genotyping failure.

b

Unconditional logistic regression adjusted for age at diagnosis/selection as control (in five year intervals), study and ethnicity.

c

P-value for trend before adjustment for multiple testing.

d

P-value for trend after adjustment for multiple testing at the gene level.

We found no evidence that genetic variation in PTGS2 was significantly related to prostate cancer risk among all subjects (Table V) or among any of the subgroups we examined. Only one PTGS2 SNP (rs2383529) was associated with risk among men with BMI < 25 (AG versus AA, OR: 1.16, 99% CI: 1.00–1.35; GG versus AA, OR: 1.24, 99% CI: 0.89–1.63; Ptrend = 0.004) but not among men with BMI between 25 and 30 or ≥30. Eighty-five percent of the total variation for this polymorphism was due to heterogeneity between the different BMI categories (supplementary Table 3 is available at Carcinogenesis Online).

Table V.

Association of PTGS2 SNPs with prostate cancer in the BPC3

SNP Casesa Controlsa OR (99% CI)b Ptrendc Gene-adjusted Ptrendd
rs10911902
    CC 5626 6072 1.00 0.57 >0.80
    CT 2138 2232 1.02 (0.93–1.12)
    TT 213 261 0.85 (0.67–1.10)
rs4648298
    TT 7597 8100 1.00 0.25 >0.80
    TC 342 420 0.92 (0.75–1.10)
    CC 7 13 0.80 (0.22–2.54)
rs2206593
    GG 7189 7692 1.00 0.34 >0.80
    GA 788 872 0.95 (0.83–1.09)
    AA 24 29 0.90 (0.43–1.82)
rs5275
    AA 3419 3664 1.00 0.44 >0.80
    AG 3465 3709 1.02 (0.93–1.11)
    GG 1006 1092 1.04 (0.91–1.19)
rs5277
    CC 3674 3962 1.00 0.27 >0.80
    CG 927 1088 0.95 (0.83–1.09)
    GG 80 103 0.91 (0.62–1.36)
rs4648261
    CC 6501 7058 1.00 0.42 >0.80
    CT 266 307 0.97 (0.78–1.22)
    TT 3 10 0.32 (0.06–1.84)
rs2745557
    GG 5614 5954 1.00 0.43 >0.80
    GA 2098 2338 0.96 (0.87–1.05)
    AA 229 235 1.03 (0.80–1.31)
rs20417
    CC 5561 5999 1.00 0.13 >0.80
    CG 2155 2299 1.05 (0.95–1.14)
    GG 259 268 1.10 (0.88–1.41)
rs689466
    TT 5089 5530 1.00 0.62 >0.80
    TC 2493 2652 1.00 (0.92–1.09)
    CC 403 398 1.06 (0.88–1.29)
rs12042763
    GG 4595 4878 1.00 0.54 >0.80
    GT 2802 3071 0.96 (0.88–1.05)
    TT 487 498 1.02 (0.86–1.22)
rs7550380
    GG 2847 2916 1.00 0.16 >0.80
    GT 1035 1082 1.06 (0.92–1.21)
    TT 112 129 1.16 (0.81–1.64)
rs2383529
    AA 4686 5050 1.00 0.13 >0.80
    AG 2709 2900 1.04 (0.95–1.13)
    GG 550 589 1.09 (0.92–1.30)
a

Numbers may not add up to 100% of subjects due to genotyping failure.

b

Unconditional logistic regression adjusted for age at diagnosis/selection as control (in five year intervals), study and ethnicity.

c

P-value for trend before adjustment for multiple testing.

d

P-value for trend after adjustment for multiple testing at the gene level.

No heterogeneity of the associations between PTGS2 and prostate cancer was observed across cohorts, by age at diagnosis or tumor aggressiveness.

In order to take into account the large number of tests performed in this study, we calculated the number of effective independent SNPs. Thirteen independent tests were obtained for IL6 in women and 12 in men, giving a gene-adjusted significant threshold for significance of 0.0008. For PTGS2, the Meff was 11 among women and 10 among men, resulting in a gene-adjusted significance level of 0.001. Using these corrected P-values, no SNP was significantly associated with either breast or prostate cancer risk. Of all 171 tests of statistical models including pairwise interactions tested for each cancer site, none showed a P-value <10−3. The minimum observed P-value for interaction (P = 0.0014) was observed between SNPs rs2056576 and rs12700386 of IL6 in relation to prostate cancer.

Discussion

With >6000 breast cancer cases and 8000 prostate cancer cases, our study is the largest to examine the association between these two cancers and PTGS2 and IL6 genes. We had excellent power (>90%) to detect common variants (frequency 10% or greater overall) with relative risks of 1.2 per copy or greater, while controlling for the number of associations considered.

Despite the large size of the study, we found no evidence of an association between PTGS2 genetic variants and prostate cancer risk. For breast cancer, a 38% increased risk was observed for homozygotes of the T allele of the PTGS2 polymorphism rs7550380. This effect even reached 50% among women of European ancestry. To our knowledge, this polymorphism was never genotyped in previous studies on PTGS2 genetic variation and breast cancer. Although this SNP is not located within the PTGS2 coding region, it is in strong linkage disequilibrium with other polymorphisms located in the gene, and one of them could be causally related to differences in breast cancer risk. Another polymorphism (rs5275) has been associated with breast cancer risk in two previous studies, one showing an increase in risk (20), whereas in the other one, a decrease in risk was observed (19). Some of the subjects included in the second study (19) were reanalyzed here using a different genotyping method. We could not confirm any association of this SNP with breast cancer risk in the present study.

Although little is known about the functionality of PTGS2 variants, one can speculate that they might affect prostaglandin expression and activity. Prostaglandins have been shown to stimulate angiogenesis and to promote tumor cell proliferation (45). Furthermore, prostaglandin E2 has been shown to increase aromatase expression within the breast and therefore the conversion of androgens to estrogens, which in turn stimulate breast tumor growth (16). Another possible mechanism of action of COX-2 on tumorigenesis is DNA damages that can be caused by free radicals formed during the peroxidation of lipids by COX-2 (46,47).

Our results at most only weakly support the earlier evidence of an association between genetic variation in the IL6 gene and breast cancer risk. One polymorphism (rs6949149) was marginally associated with an increased risk of breast cancer for carriers of TT versus GG genotypes. Previous studies on breast cancer risk and IL6 genetic variation were focusing on one particular polymorphism, rs1800795, which is located in the promoter region of IL6 and is thought to have a functional effect on gene transcription (48), showing either a positive (49,50), negative (25) or null (2628) association with breast cancer. We found no indication of an association between rs1800795 and breast cancer risk overall or in any subgroup analyses.

Before consideration for multiple testing, several IL6 polymorphisms were associated with prostate cancer risk in our study. None of the previous publications found a significant association between IL6 polymorphisms and prostate cancer risk but they were all of smaller size both in terms of number of subjects included or number polymorphisms genotyped (5153).

IL-6 is a pleiotropic cytokine that has been implicated in the inhibition of growth in breast cancer cell lines but also in the promotion of metastases. Besides, it has been shown to upregulate angiogenesis and to stimulate aromatase activity within breast tissues (10,54). IL-6 also promotes prostate cancer cell proliferation in vivo and might be involved in the transition from estrogen-dependent to estrogen-independent state of prostate tumor (9,55).

The strengths of the BPC3 include its unprecedented sample size and comprehensive characterization of variation around the PTGS2 and IL6 loci. Limitations of our study is the much smaller sample size and the less comprehensive tagging for the groups of non-European ancestry, making difficult the testing and the interpretation of the results in these subgroups. Another limitation is the fact that only two genes related to the inflammation pathway have been analyzed here. As the inflammation pathway is highly complex, it is possible that breast and prostate cancers depend on variation in multiple genes in this pathway, which may also be related to risk directly or in combination with other genes. However, the two genes included here are also the most intensively studied genes in the pathway from the point of view of polymorphisms and disease risk.

In conclusion, we observed some indication of an association between genes involved in the inflammation pathway and breast and prostate cancer risk. However, after consideration for multiple testing at the gene level, no SNP included in this study was significantly associated with cancer risk. Therefore, given the weak significance of the associations observed, these genes represent at best a minor risk factor for breast and prostate cancers.

Supplementary material

Supplementary Tables 13 can be found at http://carcin.oxfordjournals.org/

Funding

National Cancer Institute under U01 grants (CA98233, CA98710, CA98216, CA98758).

Supplementary Material

[Supplementary Data]
bgp307_index.html (852B, html)

Acknowledgments

Conflict of Interest Statement: None declared.

Glossary

Abbreviations

BMI

body-mass-index

BPC3

Breast and Prostate Cancer Cohort Consortium

CI

confidence intervals

CPS-II

Cancer Prevention Study II

IL-6

interleukin-6

EPIC

European Prospective Investigation into Cancer and Nutrition

OR

odds ratios

PTGS2

prostaglandin-endoperoxide synthase 2

SNP

single nucleotide polymorphism

References

  • 1.Coussens LM, et al. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Nelson WG, et al. Prostate cancer. N. Engl. J. Med. 2003;349:366–381. doi: 10.1056/NEJMra021562. [DOI] [PubMed] [Google Scholar]
  • 3.De Marzo AM, et al. Inflammation in prostate carcinogenesis. Nat. Rev. Cancer. 2007;7:256–269. doi: 10.1038/nrc2090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.DeNardo DG, et al. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9:212. doi: 10.1186/bcr1746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lithgow D, et al. Chronic inflammation and breast pathology: a theoretical model. Biol. Res. Nurs. 2005;7:118–129. doi: 10.1177/1099800405280823. [DOI] [PubMed] [Google Scholar]
  • 6.Vasto S, et al. Inflammation and prostate cancer. Future Oncol. 2008;4:637–645. doi: 10.2217/14796694.4.5.637. [DOI] [PubMed] [Google Scholar]
  • 7.Dennis LK, et al. Meta-analysis of measures of sexual activity and prostate cancer. Epidemiology. 2002;13:72–79. doi: 10.1097/00001648-200201000-00012. [DOI] [PubMed] [Google Scholar]
  • 8.Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006;8(suppl. 2):S3. doi: 10.1186/ar1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Culig Z, et al. Interleukin-6 regulation of prostate cancer cell growth. J. Cell. Biochem. 2005;95:497–505. doi: 10.1002/jcb.20477. [DOI] [PubMed] [Google Scholar]
  • 10.Hong DS, et al. Interleukin-6 and its receptor in cancer: implications for translational therapeutics. Cancer. 2007;110:1911–1928. doi: 10.1002/cncr.22999. [DOI] [PubMed] [Google Scholar]
  • 11.Dai Y, et al. Non-steroidal anti-inflammatory drugs in prevention of gastric cancer. World J. Gastroenterol. 2006;12:2884–2889. doi: 10.3748/wjg.v12.i18.2884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Rayyan Y, et al. The role of NSAIDs in the prevention of colon cancer. Cancer Invest. 2002;20:1002–1011. doi: 10.1081/cnv-120005917. [DOI] [PubMed] [Google Scholar]
  • 13.Schildkraut JM, et al. Analgesic drug use and risk of ovarian cancer. Epidemiology. 2006;17:104–107. doi: 10.1097/01.ede.0000190538.55645.f8. [DOI] [PubMed] [Google Scholar]
  • 14.Harris RE, et al. Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology. 1996;7:203–205. doi: 10.1097/00001648-199603000-00017. [DOI] [PubMed] [Google Scholar]
  • 15.Jacobs EJ, et al. A large cohort study of aspirin and other nonsteroidal anti-inflammatory drugs and prostate cancer incidence. J. Natl Cancer Inst. 2005;97:975–980. doi: 10.1093/jnci/dji173. [DOI] [PubMed] [Google Scholar]
  • 16.Howe LR. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 2007;9:210. doi: 10.1186/bcr1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hussain T, et al. Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett. 2003;191:125–135. doi: 10.1016/s0304-3835(02)00524-4. [DOI] [PubMed] [Google Scholar]
  • 18.Gao J, et al. Functional polymorphisms in the cyclooxygenase 2 (COX-2) gene and risk of breast cancer in a Chinese population. J. Toxicol. Environ. Health A. 2007;70:908–915. doi: 10.1080/15287390701289966. [DOI] [PubMed] [Google Scholar]
  • 19.Cox DG, et al. A polymorphism in the 3′ untranslated region of the gene encoding prostaglandin endoperoxide synthase 2 is not associated with an increase in breast cancer risk: a nested case-control study. Breast Cancer Res. 2007;9:R3. doi: 10.1186/bcr1635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Langsenlehner U, et al. The cyclooxygenase-2 (PTGS2) 8473T>C polymorphism is associated with breast cancer risk. Clin. Cancer Res. 2006;12:1392–1394. doi: 10.1158/1078-0432.CCR-05-2055. [DOI] [PubMed] [Google Scholar]
  • 21.Cheng I, et al. COX2 genetic variation, NSAIDs, and advanced prostate cancer risk. Br. J. Cancer. 2007;97:557–561. doi: 10.1038/sj.bjc.6603874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Danforth KN, et al. Polymorphic variants in PTGS2 and prostate cancer risk: results from two large nested case-control studies. Carcinogenesis. 2008;29:568–572. doi: 10.1093/carcin/bgm253. [DOI] [PubMed] [Google Scholar]
  • 23.Shahedi K, et al. Genetic variation in the COX-2 gene and the association with prostate cancer risk. Int. J. Cancer. 2006;119:668–672. doi: 10.1002/ijc.21864. [DOI] [PubMed] [Google Scholar]
  • 24.Panguluri RC, et al. COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis. 2004;25:961–966. doi: 10.1093/carcin/bgh100. [DOI] [PubMed] [Google Scholar]
  • 25.Slattery ML, et al. IL6, aspirin, nonsteroidal anti-inflammatory drugs, and breast cancer risk in women living in the southwestern United States. Cancer Epidemiol. Biomarkers Prev. 2007;16:747–755. doi: 10.1158/1055-9965.EPI-06-0667. [DOI] [PubMed] [Google Scholar]
  • 26.Smith KC, et al. Cytokine gene polymorphisms and breast cancer susceptibility and prognosis. Eur. J. Immunogenet. 2004;31:167–173. doi: 10.1111/j.1365-2370.2004.00462.x. [DOI] [PubMed] [Google Scholar]
  • 27.Gonzalez-Zuloeta Ladd AM, et al. Interleukin 6 G-174 C polymorphism and breast cancer risk. Eur. J. Epidemiol. 2006;21:373–376. doi: 10.1007/s10654-006-9005-1. [DOI] [PubMed] [Google Scholar]
  • 28.Skerrett DL, et al. Cytokine genotype polymorphisms in breast carcinoma: associations of TGF-beta1 with relapse. Cancer Invest. 2005;23:208–214. doi: 10.1081/cnv-200055954. [DOI] [PubMed] [Google Scholar]
  • 29.Hunter DJ, et al. A candidate gene approach to searching for low-penetrance breast and prostate cancer genes. Nat. Rev. Cancer. 2005;5:977–985. doi: 10.1038/nrc1754. [DOI] [PubMed] [Google Scholar]
  • 30.Calle EE, et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer. 2002;94:2490–2501. doi: 10.1002/cncr.101970. [DOI] [PubMed] [Google Scholar]
  • 31.Riboli E, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–1124. doi: 10.1079/PHN2002394. [DOI] [PubMed] [Google Scholar]
  • 32.Colditz GA, et al. The Nurses’ Health Study: lifestyle and health among women. Nat. Rev. Cancer. 2005;5:388–396. doi: 10.1038/nrc1608. [DOI] [PubMed] [Google Scholar]
  • 33.Rexrode KM, et al. Baseline characteristics of participants in the Women's Health Study. J. Womens Health Gend. Based Med. 2000;9:19–27. doi: 10.1089/152460900318911. [DOI] [PubMed] [Google Scholar]
  • 34.Kolonel LN, et al. A multiethnic cohort in Hawaii and Los Angeles: baseline characteristics. Am. J. Epidemiol. 2000;151:346–357. doi: 10.1093/oxfordjournals.aje.a010213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Hayes RB, et al. Etiologic and early marker studies in the prostate, lung, colorectal and ovarian (PLCO) cancer screening trial. Control Clin. Trials. 2000;21:349S–355S. doi: 10.1016/s0197-2456(00)00101-x. [DOI] [PubMed] [Google Scholar]
  • 36.The Alpha-Tocopherol Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N. Engl. J. Med. 1994;330:1029–1035. doi: 10.1056/NEJM199404143301501. [DOI] [PubMed] [Google Scholar]
  • 37.Giovannucci E, et al. Nutritional predictors of insulin-like growth factor I and their relationships to cancer in men. Cancer Epidemiol. Biomarkers Prev. 2003;12:84–89. [PubMed] [Google Scholar]
  • 38.Chan JM, et al. Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. J. Natl Cancer Inst. 2002;94:1099–1106. doi: 10.1093/jnci/94.14.1099. [DOI] [PubMed] [Google Scholar]
  • 39.Feigelson HS, et al. Haplotype analysis of the HSD17B1 gene and risk of breast cancer: a comprehensive approach to multicenter analyses of prospective cohort studies. Cancer Res. 2006;66:2468–2475. doi: 10.1158/0008-5472.CAN-05-3574. [DOI] [PubMed] [Google Scholar]
  • 40.Kraft P, et al. Genetic variation in the HSD17B1 gene and risk of prostate cancer. PLoS Genet. 2005;1:e68. doi: 10.1371/journal.pgen.0010068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.de Bakker PI, et al. Efficiency and power in genetic association studies. Nat. Genet. 2005;37:1217–1223. doi: 10.1038/ng1669. [DOI] [PubMed] [Google Scholar]
  • 42.Carlson CS, et al. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am. J. Hum. Genet. 2004;74:106–120. doi: 10.1086/381000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Higgins JP, et al. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21:1539–1558. doi: 10.1002/sim.1186. [DOI] [PubMed] [Google Scholar]
  • 44.Gao X, et al. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 2008;32:361–369. doi: 10.1002/gepi.20310. [DOI] [PubMed] [Google Scholar]
  • 45.Cao Y, et al. Many actions of cyclooxygenase-2 in cellular dynamics and in cancer. J. Cell. Physiol. 2002;190:279–286. doi: 10.1002/jcp.10068. [DOI] [PubMed] [Google Scholar]
  • 46.Lee SH, et al. Cyclooxygenase-2-mediated DNA damage. J. Biol. Chem. 2005;280:28337–28346. doi: 10.1074/jbc.M504178200. [DOI] [PubMed] [Google Scholar]
  • 47.Blair IA. Lipid hydroperoxide-mediated DNA damage. Exp. Gerontol. 2001;36:1473–1481. doi: 10.1016/s0531-5565(01)00133-4. [DOI] [PubMed] [Google Scholar]
  • 48.Fishman D, et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 1998;102:1369–1376. doi: 10.1172/JCI2629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Iacopetta B, et al. The -174 G/C gene polymorphism in interleukin-6 is associated with an aggressive breast cancer phenotype. Br. J. Cancer. 2004;90:419–422. doi: 10.1038/sj.bjc.6601545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Hefler LA, et al. Interleukin-1 and interleukin-6 gene polymorphisms and the risk of breast cancer in Caucasian women. Clin. Cancer Res. 2005;11:5718–5721. doi: 10.1158/1078-0432.CCR-05-0001. [DOI] [PubMed] [Google Scholar]
  • 51.Kesarwani P, et al. Association between -174 G/C promoter polymorphism of the interleukin-6 gene and progression of prostate cancer in North Indian population. DNA Cell Biol. 2008;27:505–510. doi: 10.1089/dna.2008.0742. [DOI] [PubMed] [Google Scholar]
  • 52.Michaud DS, et al. Genetic polymorphisms of interleukin-1B (IL-1B), IL-6, IL-8, and IL-10 and risk of prostate cancer. Cancer Res. 2006;66:4525–4530. doi: 10.1158/0008-5472.CAN-05-3987. [DOI] [PubMed] [Google Scholar]
  • 53.Sun J, et al. Interleukin-6 sequence variants are not associated with prostate cancer risk. Cancer Epidemiol. Biomarkers Prev. 2004;13:1677–1679. [PubMed] [Google Scholar]
  • 54.Knupfer H, et al. Significance of interleukin-6 (IL-6) in breast cancer (review) Breast Cancer Res. Treat. 2007;102:129–135. doi: 10.1007/s10549-006-9328-3. [DOI] [PubMed] [Google Scholar]
  • 55.Culig Z. Interleukin-6 polymorphism: expression and pleiotropic regulation in human prostate cancer. J. Urol. 2005;174:417. doi: 10.1097/01.ju.0000171014.31670.a8. [DOI] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

[Supplementary Data]
bgp307_index.html (852B, html)

Articles from Carcinogenesis are provided here courtesy of Oxford University Press

RESOURCES