Abstract
A kinetic model describing conduction changes across excitable membranes is proposed. It assumes that a population of discrete membrane sites is distributed among several distinct functional states determined by the voltage across the membrane. Interconversion of these states is postulated to occur by first-order reactions. It provides a satisfactory description of the central aspects of excitable membrane behavior, including current-time and current-voltage relationships, action potential, and effects of inhibitors.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adam G. Theorie der Nervenerregung als kooperativer Kationenaustausch in einem zweidimensionalen Gitter. I. Ionenstrom nach einem depolarisierenden Sprung im Membranpotential. Z Naturforsch B. 1968 Feb;23(2):181–197. [PubMed] [Google Scholar]
- Agin D., Schauf C. Concerning negative conductance in the squid axon. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1201–1208. doi: 10.1073/pnas.59.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong C. M. Time course of TEA(+)-induced anomalous rectification in squid giant axons. J Gen Physiol. 1966 Nov;50(2):491–503. doi: 10.1085/jgp.50.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Changeux J. P., Thiéry J., Tung Y., Kittel C. On the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335–341. doi: 10.1073/pnas.57.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole K. S., Curtis H. J. ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY. J Gen Physiol. 1939 May 20;22(5):649–670. doi: 10.1085/jgp.22.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke I. M., Diamond J. M., Grinnell A. D., Hagiwara S., Sakata H. Suppression of the action potential in nerve by nitrobenzene derivatives. Proc Natl Acad Sci U S A. 1968 Jun;60(2):470–477. doi: 10.1073/pnas.60.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frank G. B. Drugs which modify membrane excitability. Fed Proc. 1968 Jan-Feb;27(1):132–136. [PubMed] [Google Scholar]
- GOLDMANN D. E. A MOLECULAR STRUCTURAL BASIS FOR THE EXCITATION PROPERTIES OF AXONS. Biophys J. 1964 May;4:167–188. doi: 10.1016/s0006-3495(64)86776-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. N., Hanna G. R. Membrane model: a single transistor analog of excitable membrane. J Theor Biol. 1969 Mar;22(3):401–411. doi: 10.1016/0022-5193(69)90012-5. [DOI] [PubMed] [Google Scholar]
- MOORE J. W. Excitation of the squid axon membrane in isosmotic potassium chloride. Nature. 1959 Jan 24;183(4656):265–266. doi: 10.1038/183265b0. [DOI] [PubMed] [Google Scholar]
- MULLINS L. J. An analysis of pore size in excitable membranes. J Gen Physiol. 1960 May;43:105–117. doi: 10.1085/jgp.43.5.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J. W., Narahashi T. Tetrodotoxin's highly selective blockage of an ionic channel. Fed Proc. 1967 Nov-Dec;26(6):1655–1663. [PubMed] [Google Scholar]
- Mullins L. J. A single channel or a dual channel mechanism for nerve excitation. J Gen Physiol. 1968 Sep;52(3):550–556. doi: 10.1085/jgp.52.3.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pooler J. Light-induced changes in dye-treated lobster giant axons. Biophys J. 1968 Sep;8(9):1009–1026. doi: 10.1016/S0006-3495(68)86535-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rojas E., Atwater I. Blocking of potassium currents by pronase in perfused giant axons. Nature. 1967 Aug 19;215(5103):850–852. doi: 10.1038/215850a0. [DOI] [PubMed] [Google Scholar]
- Shrager P. G., Macey R. I., Strickholm A. Internal perfusion of crayfish, giant axons: action of tannic acid, DDT, and TEA. J Cell Physiol. 1969 Aug;74(1):77–90. doi: 10.1002/jcp.1040740111. [DOI] [PubMed] [Google Scholar]
- Shrager P. G., Strickholm A., Macey R. I. Chemical modification of crayfish axons by protein crosslinking aldehydes. J Cell Physiol. 1969 Aug;74(1):91–100. doi: 10.1002/jcp.1040740112. [DOI] [PubMed] [Google Scholar]
- Stephens W. G. Hydrogen ion and the activation of electrically excitable membranes. Nature. 1969 Nov 8;224(5219):547–549. doi: 10.1038/224547a0. [DOI] [PubMed] [Google Scholar]
- TEORELL T. Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomena in artificial membranes. J Gen Physiol. 1959 Mar 20;42(4):831–845. doi: 10.1085/jgp.42.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei L. Y. Molecular mechanisms of nerve excitation and conduction. Bull Math Biophys. 1969 Mar;31(1):39–58. doi: 10.1007/BF02478207. [DOI] [PubMed] [Google Scholar]
