Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Oct;67(2):799–806. doi: 10.1073/pnas.67.2.799

Kinetic Model of Conduction Changes across Excitable Membranes*

Mahendra K Jain 1, Richard H L Marks 1, E H Cordes 1
PMCID: PMC283276  PMID: 5289023

Abstract

A kinetic model describing conduction changes across excitable membranes is proposed. It assumes that a population of discrete membrane sites is distributed among several distinct functional states determined by the voltage across the membrane. Interconversion of these states is postulated to occur by first-order reactions. It provides a satisfactory description of the central aspects of excitable membrane behavior, including current-time and current-voltage relationships, action potential, and effects of inhibitors.

Full text

PDF
799

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adam G. Theorie der Nervenerregung als kooperativer Kationenaustausch in einem zweidimensionalen Gitter. I. Ionenstrom nach einem depolarisierenden Sprung im Membranpotential. Z Naturforsch B. 1968 Feb;23(2):181–197. [PubMed] [Google Scholar]
  2. Agin D., Schauf C. Concerning negative conductance in the squid axon. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1201–1208. doi: 10.1073/pnas.59.4.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Armstrong C. M. Time course of TEA(+)-induced anomalous rectification in squid giant axons. J Gen Physiol. 1966 Nov;50(2):491–503. doi: 10.1085/jgp.50.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chandler W. K., Meves H. Voltage clamp experiments on internally perfused giant axons. J Physiol. 1965 Oct;180(4):788–820. doi: 10.1113/jphysiol.1965.sp007732. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Changeux J. P., Thiéry J., Tung Y., Kittel C. On the cooperativity of biological membranes. Proc Natl Acad Sci U S A. 1967 Feb;57(2):335–341. doi: 10.1073/pnas.57.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cole K. S., Curtis H. J. ELECTRIC IMPEDANCE OF THE SQUID GIANT AXON DURING ACTIVITY. J Gen Physiol. 1939 May 20;22(5):649–670. doi: 10.1085/jgp.22.5.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cooke I. M., Diamond J. M., Grinnell A. D., Hagiwara S., Sakata H. Suppression of the action potential in nerve by nitrobenzene derivatives. Proc Natl Acad Sci U S A. 1968 Jun;60(2):470–477. doi: 10.1073/pnas.60.2.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frank G. B. Drugs which modify membrane excitability. Fed Proc. 1968 Jan-Feb;27(1):132–136. [PubMed] [Google Scholar]
  9. GOLDMANN D. E. A MOLECULAR STRUCTURAL BASIS FOR THE EXCITATION PROPERTIES OF AXONS. Biophys J. 1964 May;4:167–188. doi: 10.1016/s0006-3495(64)86776-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hille B. Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol. 1968 Feb;51(2):199–219. doi: 10.1085/jgp.51.2.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. N., Hanna G. R. Membrane model: a single transistor analog of excitable membrane. J Theor Biol. 1969 Mar;22(3):401–411. doi: 10.1016/0022-5193(69)90012-5. [DOI] [PubMed] [Google Scholar]
  14. MOORE J. W. Excitation of the squid axon membrane in isosmotic potassium chloride. Nature. 1959 Jan 24;183(4656):265–266. doi: 10.1038/183265b0. [DOI] [PubMed] [Google Scholar]
  15. MULLINS L. J. An analysis of pore size in excitable membranes. J Gen Physiol. 1960 May;43:105–117. doi: 10.1085/jgp.43.5.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moore J. W., Narahashi T. Tetrodotoxin's highly selective blockage of an ionic channel. Fed Proc. 1967 Nov-Dec;26(6):1655–1663. [PubMed] [Google Scholar]
  17. Mullins L. J. A single channel or a dual channel mechanism for nerve excitation. J Gen Physiol. 1968 Sep;52(3):550–556. doi: 10.1085/jgp.52.3.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pooler J. Light-induced changes in dye-treated lobster giant axons. Biophys J. 1968 Sep;8(9):1009–1026. doi: 10.1016/S0006-3495(68)86535-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rojas E., Atwater I. Blocking of potassium currents by pronase in perfused giant axons. Nature. 1967 Aug 19;215(5103):850–852. doi: 10.1038/215850a0. [DOI] [PubMed] [Google Scholar]
  20. Shrager P. G., Macey R. I., Strickholm A. Internal perfusion of crayfish, giant axons: action of tannic acid, DDT, and TEA. J Cell Physiol. 1969 Aug;74(1):77–90. doi: 10.1002/jcp.1040740111. [DOI] [PubMed] [Google Scholar]
  21. Shrager P. G., Strickholm A., Macey R. I. Chemical modification of crayfish axons by protein crosslinking aldehydes. J Cell Physiol. 1969 Aug;74(1):91–100. doi: 10.1002/jcp.1040740112. [DOI] [PubMed] [Google Scholar]
  22. Stephens W. G. Hydrogen ion and the activation of electrically excitable membranes. Nature. 1969 Nov 8;224(5219):547–549. doi: 10.1038/224547a0. [DOI] [PubMed] [Google Scholar]
  23. TEORELL T. Electrokinetic membrane processes in relation to properties of excitable tissues. I. Experiments on oscillatory transport phenomena in artificial membranes. J Gen Physiol. 1959 Mar 20;42(4):831–845. doi: 10.1085/jgp.42.4.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wei L. Y. Molecular mechanisms of nerve excitation and conduction. Bull Math Biophys. 1969 Mar;31(1):39–58. doi: 10.1007/BF02478207. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES