Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Oct;67(2):951–958. doi: 10.1073/pnas.67.2.951

Mechanism of Polymerization of the Salmonella O-Antigen: Utilization of Lipid-Linked Intermediates

Shiro Kanegasaki 1, Andrew Wright 1
PMCID: PMC283297  PMID: 5289031

Abstract

Cell envelope fractions from Salmonella can utilize exogenous lipid-linked intermediates for the synthesis of polymeric O-antigen. We describe a method for preparing aqueous suspensions of lipid intermediates and show that freezing and thawing of cell envelope-lipid intermediate mixtures is required for efficient synthesis. The lipid intermediates move freely in the hydrophobic environment of the membrane.

Full text

PDF
951

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bray D., Robbins P. W. Mechanism of epsilon-15 conversion studies with bacteriphage mutants. J Mol Biol. 1967 Dec 28;30(3):457–475. doi: 10.1016/0022-2836(67)90362-2. [DOI] [PubMed] [Google Scholar]
  2. Bray D., Robbins P. W. The direction of chain growth in Salmonella anatum O-antigen biosynthesis. Biochem Biophys Res Commun. 1967 Aug 7;28(3):334–339. doi: 10.1016/0006-291x(67)90314-2. [DOI] [PubMed] [Google Scholar]
  3. CARMINATTI H., PASSERON S., DANKERT M., RECONDO E. SEPARATION OF SUGAR NUCLEOTIDES, PHOSPHORIC ESTERS AND FREE SUGARS BY PAPER CHROMATOGRAPHY WITH SOLVENTS CONTAINING BORATES OF ORGANIC BASES. J Chromatogr. 1965 May;18:342–348. doi: 10.1016/s0021-9673(01)80372-1. [DOI] [PubMed] [Google Scholar]
  4. Dankert M., Wright A., Kelley W. S., Robbins P. W. Isolation, purification, and properties of the lipid-linked intermediates of O-antigen biosynthesis. Arch Biochem Biophys. 1966 Sep 26;116(1):425–435. doi: 10.1016/0003-9861(66)90049-x. [DOI] [PubMed] [Google Scholar]
  5. Higashi Y., Strominger J. L., Sweeley C. C. Structure of a lipid intermediate in cell wall peptidoglycan synthesis: a derivative of a C55 isoprenoid alcohol. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1878–1884. doi: 10.1073/pnas.57.6.1878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kent J. L., Osborn M. J. Further studies on enzymatic synthesis of O-antigen in Salmonella typhimurium. Biochemistry. 1968 Dec;7(12):4409–4419. doi: 10.1021/bi00852a037. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. NIKAIDO H., NIKAIDO K. BIOSYNTHESIS OF CELL WALL POLYSACCHARIDE IN MUTANT STRAINS OF SALMONELLA. IV. SYNTHESIS OF S-SPECIFIC SIDE-CHAIN. Biochem Biophys Res Commun. 1965 Apr 23;19:322–327. doi: 10.1016/0006-291x(65)90462-6. [DOI] [PubMed] [Google Scholar]
  9. Osborn M. J. Structure and biosynthesis of the bacterial cell wall. Annu Rev Biochem. 1969;38:501–538. doi: 10.1146/annurev.bi.38.070169.002441. [DOI] [PubMed] [Google Scholar]
  10. Osborn M. J., Weiner I. M. Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J Biol Chem. 1968 May 25;243(10):2631–2639. [PubMed] [Google Scholar]
  11. ROBBINS P. W., UCHIDA T. Studies on the chemical basis of the phage conversion of O-antigens in the E-group Salmonellae. Biochemistry. 1962 Mar;1:323–335. doi: 10.1021/bi00908a020. [DOI] [PubMed] [Google Scholar]
  12. ROBBINS P. W., WRIGHT A., BELLOWS J. L. ENZYMATIC SYNTHESIS OF THE SALMONELLA O-ANTIGEN. Proc Natl Acad Sci U S A. 1964 Nov;52:1302–1309. doi: 10.1073/pnas.52.5.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rapin A. M., Kalckar H. M., Alberico L. The metabolic basis for masking of receptor-sites on E. coli K-12 for C21, a lipopolysaccharide core-specific phage. Arch Biochem Biophys. 1968 Oct;128(1):95–105. doi: 10.1016/0003-9861(68)90011-8. [DOI] [PubMed] [Google Scholar]
  14. Revel H. R. Restriction of nonglucosylated T-even bacteriophage: properties of permissive mutants of Escherichia coli B and K12. Virology. 1967 Apr;31(4):688–701. doi: 10.1016/0042-6822(67)90197-3. [DOI] [PubMed] [Google Scholar]
  15. SHEDLOVSKY A., BRENNER S. A CHEMICAL BASIS FOR THE HOST-INDUCED MODIFICATION OF T-EVEN BACTERIOPHAGES. Proc Natl Acad Sci U S A. 1963 Aug;50:300–305. doi: 10.1073/pnas.50.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weiner I. M., Higuchi T., Rothfield L., Saltmarsh-Andrew M., Osborn M. J., Horecker B. L. Biosynthesis of bacterial lipopolysaccharide. V. Lipid-linked intermediates in the biosynthesis of the O-antigen groups of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1965 Jul;54(1):228–235. doi: 10.1073/pnas.54.1.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wright A., Dankert M., Fennessey P., Robbins P. W. Characterization of a polyisoprenoid compound functional in O-antigen biosynthesis. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1798–1803. doi: 10.1073/pnas.57.6.1798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wright A., Dankert M., Robbins P. W. Evidence for an intermediate stage in the biosynthesis of the Salmonella O-antigen. Proc Natl Acad Sci U S A. 1965 Jul;54(1):235–241. doi: 10.1073/pnas.54.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES