Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Oct;67(2):1057–1062. doi: 10.1073/pnas.67.2.1057

Purification of a Specific tRNA by Sepharose-Bound Enzyme*

Jeffrey Denburg 1,2, Marlene DeLuca 1,2,
PMCID: PMC283312  PMID: 4943171

Abstract

A new procedure for measuring binding of tRNA to aminoacyl-tRNA synthetases is described. The purified isoleucyl-tRNA synthetase from Escherichia coli can be covalently bound to activated Sepharose with retention of approximately 40% of the original enzymatic activity. If crude tRNA is passed through a small column of enzyme-Sepharose, isoleucyl-tRNA is preferentially retained. The procedure can be used as a means of purifying specific tRNA molecules.

Full text

PDF
1057

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin A. N., Berg P. Purification and properties of isoleucyl ribonucleic acid synthetase from Escherichia coli. J Biol Chem. 1966 Feb 25;241(4):831–838. [PubMed] [Google Scholar]
  2. Cuatrecasas P., Wilchek M., Anfinsen C. B. Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci U S A. 1968 Oct;61(2):636–643. doi: 10.1073/pnas.61.2.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DeLuca M., Marsh M. Conformational changes of luciferase during catalyses. Tritium-hydrogen exchange and optical rotation studies. Arch Biochem Biophys. 1967 Jul;121(1):233–240. doi: 10.1016/0003-9861(67)90029-x. [DOI] [PubMed] [Google Scholar]
  4. Givol D., Weinstein Y., Gorecki M., Wilchek M. A general method for the isolation of labelled peptides from affinity-labelled proteins. Biochem Biophys Res Commun. 1970 Feb 20;38(4):825–830. doi: 10.1016/0006-291x(70)90656-x. [DOI] [PubMed] [Google Scholar]
  5. Iaccarino M., Berg P. Requirement of sulfhydryl groups for the catalytic and tRNA recognition functions of isoleucyl-tRNA synthetase. J Mol Biol. 1969 Jun 14;42(2):151–169. doi: 10.1016/0022-2836(69)90036-9. [DOI] [PubMed] [Google Scholar]
  6. James H. L., Morrison J. C., Shiflet R. N., Trass T. C., Whybrew W. D., Bucovaz E. T. Interaction of homologous transfer RNA with yeast aminoacyl-RNA synthetases. Biochem Biophys Res Commun. 1968 Nov 25;33(4):574–583. doi: 10.1016/0006-291x(68)90334-3. [DOI] [PubMed] [Google Scholar]
  7. Kuo T., DeLuca M. Requirement of different sulfhydryl groups in the activation and transfer reactions of isoleucyl transfer ribonucleic acid synthetase. Biochemistry. 1969 Dec;8(12):4762–4768. doi: 10.1021/bi00840a017. [DOI] [PubMed] [Google Scholar]
  8. Lagerkvist U., Rymo L. Structure and function of transfer ribonucleic acid. 3. Some properties of a complex between valyl transfer ribonucleic acid synthetase and transfer ribonucleic acid specific for valine. J Biol Chem. 1969 May 10;244(9):2476–2483. [PubMed] [Google Scholar]
  9. Lagerkvist U., Rymo L., Waldenström J. Structure and function of transfer ribonucleic acid. II. Enzyme-substrate complexes with valyl ribonucleic acid synthetase from yeast. J Biol Chem. 1966 Nov 25;241(22):5391–5400. [PubMed] [Google Scholar]
  10. Mitra S. K., Chakraburtty K., Mehler A. H. Binding of transfer RNA and arginine to the arginine transfer RNA synthetase of Escherichia coli. J Mol Biol. 1970 Apr 14;49(1):139–156. doi: 10.1016/0022-2836(70)90382-7. [DOI] [PubMed] [Google Scholar]
  11. NORRIS A. T., BERG P. MECHANISM OF AMINOACYL RNA SYNTHESIS: STUDIES WITH ISOLATED AMINOACYL ADENYLATE COMPLEXES OF ISOLEUCYL RNA SYNTHETASE. Proc Natl Acad Sci U S A. 1964 Aug;52:330–337. doi: 10.1073/pnas.52.2.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohta T., Schimada I., Imahori K. Conformational change of tyrosyl-RNA synthetase induced by its specific transfer RNA. J Mol Biol. 1967 Jun 28;26(3):519–524. doi: 10.1016/0022-2836(67)90319-1. [DOI] [PubMed] [Google Scholar]
  13. Okamoto T., Kawade Y. Electrophoretic separation of complexes of aminoacyl-tRNA synthetase and transfer RNA. Biochim Biophys Acta. 1967;145(3):613–620. doi: 10.1016/0005-2787(67)90120-7. [DOI] [PubMed] [Google Scholar]
  14. Porath J., Axen R., Ernback S. Chemical coupling of proteins to agarose. Nature. 1967 Sep 30;215(5109):1491–1492. doi: 10.1038/2151491a0. [DOI] [PubMed] [Google Scholar]
  15. Preddie E. C. Tryptophanyl transfer ribonucleic acid synthetase from bovine pancreas. 3. A complex of tryptophanyl transfer ribonucleic acid synthetase and transfer ribonucleic acid that accepts tryptophan: the purification of 32 P-tryptophan transfer ribonucleic acid. J Biol Chem. 1969 Jul 25;244(14):3969–3972. [PubMed] [Google Scholar]
  16. Seifert W., Nass G., Zillig W. Electrophoretic separation of tRNA-bound leucyl-tRNA synthetase from Escherichia coli extracts. J Mol Biol. 1968 Apr 28;33(2):507–511. doi: 10.1016/0022-2836(68)90208-8. [DOI] [PubMed] [Google Scholar]
  17. Yarus M., Berg P. Recognition of tRNA by aminoacyl tRNA synthetases. J Mol Biol. 1967 Sep 28;28(3):479–490. doi: 10.1016/s0022-2836(67)80098-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES