Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Oct;67(2):1071–1078. doi: 10.1073/pnas.67.2.1071

Mechanism of Thyroid Calorigenesis: Role of Active Sodium Transport*

Faramarz Ismail-Beigi 1,2,3,, Isidore S Edelman 1,2,3
PMCID: PMC283314  PMID: 5289002

Abstract

The hypothesis that thyroid calorigenesis is mediated by stimulation of active Na+ transport was tested by measuring the Qo2 of liver slices and skeletal muscle (diaphragm) from thyroxine- and triiodothyronine-injected thyroidectomized and normal rats in media fortified with ouabain (10-3 M) and/or free of Na+ or K+. In both tissues, more than 90% of the increase in Qo2 produced by injections of thyroid hormone in euthyroid rats was derived from increased energy utilization by the Na+ pump. In triiodothyronine-treated thyroidectomized rats, activation of Na+ transport accounted for 90% or more of the increment in Qo2 in liver and 40% or more of the increment in diaphragm. Intracellular Na+, K+, and Cl- concentrations were measured in euthyroid and hyperthyroid liver and diaphragm. The transmembrane Na+ and K+ concentration differences were significantly increased in both tissues by the administration of triiodothyronine. These results indicate that thyroid hormone activates Na+ extrusion and K+ accumulation either by increasing the local concentration of ATP or by direct stimulation of the Na+ pump.

Full text

PDF
1071

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARKER S. B., KLITGAARD H. M. Metabolism of tissues excised from thyroxine-injected rats. Am J Physiol. 1952 Jul;170(1):81–86. doi: 10.1152/ajplegacy.1952.170.1.81. [DOI] [PubMed] [Google Scholar]
  2. FLETCHER K., MYANT N. B., TYLER D. D. The influence of thyroid hormone upon the metabolism of adenosine triphosphate in rat liver. J Physiol. 1962 Jul;162:345–357. doi: 10.1113/jphysiol.1962.sp006937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fanestil D. D., Edelman I. S. Characteristics of the renal nuclear receptors for aldosterone. Proc Natl Acad Sci U S A. 1966 Sep;56(3):872–879. doi: 10.1073/pnas.56.3.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hazlewood C. F., Nichols B. L. Changes in muscle sodium, potassium, chloride, water and voltage during maturation in the rat: an experimental and theoretical study. Johns Hopkins Med J. 1969 Sep;125(3):119–133. [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. NIELSON R. R., LOIZZI R. F., KLITGAARD H. M. Metabolic changes in the intact rat and excised tisxues after thyroidectomy. Am J Physiol. 1961 Jan;200:55–57. doi: 10.1152/ajplegacy.1961.200.1.55. [DOI] [PubMed] [Google Scholar]
  7. Nissan S., Aviram A., Czaczkes J. W., Ullmann L., Ullmann T. D. Increased O-2 consumption of the rat diaphragm by elevated NaCl concentrations. Am J Physiol. 1966 Jun;210(6):1222–1224. doi: 10.1152/ajplegacy.1966.210.6.1222. [DOI] [PubMed] [Google Scholar]
  8. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  9. Schäfer G., Nägel L. Action of insulin and triiodothyronine on energy-controlled pathways of hydrogen. Biochim Biophys Acta. 1968 Nov 26;162(4):617–620. doi: 10.1016/0005-2728(68)90070-4. [DOI] [PubMed] [Google Scholar]
  10. Stocker W. W., Samaha F. J., DeGroot L. J. Coupled oxidative phosphorylation in muscle of thyrotoxic patients. Am J Med. 1968 Jun;44(6):900–909. doi: 10.1016/0002-9343(68)90090-9. [DOI] [PubMed] [Google Scholar]
  11. TATA J. R., ERNSTER L., LINDBERG O., ARRHENIUS E., PEDERSEN S., HEDMAN R. The action of thyroid hormones at the cell level. Biochem J. 1963 Mar;86:408–428. doi: 10.1042/bj0860408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Valcana T., Timiras P. S. Effect of hypothyroidism on ionic metabolism and Na-K activated ATP phosphohydrolase activity in the developing rat brain. J Neurochem. 1969 Jun;16(3):935–943. doi: 10.1111/j.1471-4159.1969.tb08983.x. [DOI] [PubMed] [Google Scholar]
  13. WHITTAM R., WILLIS J. S. ION MOVEMENTS AND OXYGEN CONSUMPTION IN KIDNEY CORTEX SLICES. J Physiol. 1963 Aug;168:158–177. doi: 10.1113/jphysiol.1963.sp007184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Whittam R., Blond D. M. Respiratory control by an adenosine triphosphatase involved in active transport in brain cortex. Biochem J. 1964 Jul;92(1):147–158. doi: 10.1042/bj0920147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whittam R., Blond D. M. Respiratory control by an adenosine triphosphatase involved in active transport in brain cortex. Biochem J. 1964 Jul;92(1):147–158. doi: 10.1042/bj0920147. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES