Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Nov;67(3):1321–1328. doi: 10.1073/pnas.67.3.1321

Topography of the Escherichia coli 30S Ribosomal Subunit and Streptomycin Binding*

F N Chang 1, Joel G Flaks 1,
PMCID: PMC283355  PMID: 4922287

Abstract

Treatment of Escherichia coli 30S ribosomal subunits with trypsin sequentially removes a number of different ribosomal proteins, as revealed by polyacrylamide gel electrophoresis. Proteins that are removed early by trypsin correlate well with those that are added last during reconstitutive assembly of the 30S subunit from 16S ribosomal RNA and the total protein complement. Proteins that are resistant to removal from the subunit by the highest trypsin concentration used correlate with those that are added early during assembly. Six proteins can be removed from the subunit with trypsin without affecting its ability to bind the antibiotic streptomycin. A decline in the ability of the 30S subunit to bind streptomycin is correlated with the removal of either one, or both, of two proteins, neither one of which is the gene product of the streptomycin locus. The implications of these findings for the topography and assembly of the 30S subunit are considered.

Full text

PDF
1321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COX E. C., WHITE J. R., FLAKS J. G. STREPTOMYCIN ACTION AND THE RIBOSOME. Proc Natl Acad Sci U S A. 1964 Apr;51:703–709. doi: 10.1073/pnas.51.4.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hultin T., Ostner U. Selective degradation of ribosomal proteins by proteolytic enzymes. Biochim Biophys Acta. 1967 Sep 19;147(1):178–180. doi: 10.1016/0005-2795(67)90103-1. [DOI] [PubMed] [Google Scholar]
  3. Kurland C. G., Voynow P., Hardy S. J., Randall L., Lutter L. Physical and functional heterogeneity of E. coli ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:17–24. doi: 10.1101/sqb.1969.034.01.006. [DOI] [PubMed] [Google Scholar]
  4. LEBOY P. S., COX E. C., FLAKS J. G. THE CHROMOSOMAL SITE SPECIFYING A RIBOSOMAL PROTEIN IN ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Dec;52:1367–1374. doi: 10.1073/pnas.52.6.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mizushima S., Nomura M. Assembly mapping of 30S ribosomal proteins from E. coli. Nature. 1970 Jun 27;226(5252):1214–1214. doi: 10.1038/2261214a0. [DOI] [PubMed] [Google Scholar]
  6. Nomura M., Mizushima S., Ozaki M., Traub P., Lowry C. V. Structure and function of ribosomes and their molecular components. Cold Spring Harb Symp Quant Biol. 1969;34:49–61. doi: 10.1101/sqb.1969.034.01.009. [DOI] [PubMed] [Google Scholar]
  7. Ostner U., Hultin T. The use of proteolytic enzymes in the study of ribosomal structure. Biochim Biophys Acta. 1968 Feb 19;154(2):376–387. doi: 10.1016/0005-2795(68)90052-4. [DOI] [PubMed] [Google Scholar]
  8. Ozaki M., Mizushima S., Nomura M. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature. 1969 Apr 26;222(5191):333–339. doi: 10.1038/222333a0. [DOI] [PubMed] [Google Scholar]
  9. Tanaka Y., Kaji H. The role of ribosomal protein for the binding of dihydrostreptomycin to ribosomes. Biochem Biophys Res Commun. 1968 Jul 26;32(2):313–319. doi: 10.1016/0006-291x(68)90387-2. [DOI] [PubMed] [Google Scholar]
  10. Traub P., Hosokawa K., Craven G. R., Nomura M. Structure and function of E. coli ribosomes, IV. Isolation and characterization of functionally active ribosomal proteins. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2430–2436. doi: 10.1073/pnas.58.6.2430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Traub P., Nomura M. Streptomycin resistance mutation in Escherichia coli: altered ribosomal protein. Science. 1968 Apr 12;160(3824):198–199. doi: 10.1126/science.160.3824.198. [DOI] [PubMed] [Google Scholar]
  12. Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. I. Partial fractionation of the functionally active ribosomal proteins and reconstitution of artificial subribosomal particles. J Mol Biol. 1968 Jun 28;34(3):575–593. doi: 10.1016/0022-2836(68)90182-4. [DOI] [PubMed] [Google Scholar]
  13. Traub P., Nomura M. Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. J Mol Biol. 1969 Mar 28;40(3):391–413. doi: 10.1016/0022-2836(69)90161-2. [DOI] [PubMed] [Google Scholar]
  14. Traut R. R., Delius H., Ahmad-Zadeh C., Bickle T. A., Pearson P., Tissières A. Ribosomal proteins of E. Coli: stoichiometry and implications for ribosome structure. Cold Spring Harb Symp Quant Biol. 1969;34:25–38. doi: 10.1101/sqb.1969.034.01.007. [DOI] [PubMed] [Google Scholar]
  15. WALLER J. P. FRACTIONATION OF THE RIBOSOMAL PROTEIN FROM ESCHERICHIA COLI. J Mol Biol. 1964 Nov;10:319–336. doi: 10.1016/s0022-2836(64)80050-4. [DOI] [PubMed] [Google Scholar]
  16. WALLER J. P., HARRIS J. I. Studies on the composition of the protein from Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1961 Jan 15;47:18–23. doi: 10.1073/pnas.47.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES