Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Nov;67(3):1550–1557. doi: 10.1073/pnas.67.3.1550

Fine Structure of the Motile Cells and Flagella in a Member of the Actinoplanaceae (Actinomycetales)

Charles E Bland 1
PMCID: PMC283389  PMID: 4098725

Abstract

The motile cells (sporangiospores) of an undescribed member of the Actinoplanaceae are studied by electron microscopy as shadowed, negatively stained, and sectioned preparations. The rod-shaped spores exhibit a typically bacterial internal structure. However, a single tubular structure (rhapidosome) is positioned just inside the site of flagellar attachment of each spore and is oriented perpendicular to the direction of the flagella. Flagella arise from basal dises and pass through the plasma membrane and the two-layered cell wall to become associated with other flagella to function as a posteriorly directed unit. Each flagellum consists of a helical band or ribbon which dissociates into 5 or 6 subfibrils.

Full text

PDF
1550

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abram D., Vatter A. E., Koffler H. Attachment and structural features of flagella of certain bacilli. J Bacteriol. 1966 May;91(5):2045–2068. doi: 10.1128/jb.91.5.2045-2068.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CORRELL D. L., LEWIN R. A. ROD-SHAPED RIBONUCLEOPROTEIN PARTICLES FROM SAPROSPIRA. Can J Microbiol. 1964 Feb;10:63–74. doi: 10.1139/m64-010. [DOI] [PubMed] [Google Scholar]
  3. Cohen-Bazire G., London J. Basal organelles of bacterial flagella. J Bacteriol. 1967 Aug;94(2):458–465. doi: 10.1128/jb.94.2.458-465.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. ENSIGN J. C., WOLFE R. S. LYSIS OF BACTERIAL CELL WALLS BY AN ENZYME ISOLATED FROM A MYXOBACTER. J Bacteriol. 1965 Aug;90:395–402. doi: 10.1128/jb.90.2.395-402.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FITZ-JAMES P. C. Participation of the cytoplasmic membrane in the growth and spore fromation of bacilli. J Biophys Biochem Cytol. 1960 Oct;8:507–528. doi: 10.1083/jcb.8.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FORSLIND B., SWANBECK G. THE EFFECT OF OSMIUM-FIXATION ON BACTERIAL FLAGELLA. Exp Cell Res. 1963 Oct;32:179–182. doi: 10.1016/0014-4827(63)90085-5. [DOI] [PubMed] [Google Scholar]
  7. Gumpert J., Taubeneck U. "Mikrotubuli" bei Proteus mirabilis als Produkte defekter Lysogenie. Z Allg Mikrobiol. 1968;8(2):101–105. [PubMed] [Google Scholar]
  8. Higgins M. L., Lechevalier M. P., Lechevalier H. A. Flagellated actinomycetes. J Bacteriol. 1967 Apr;93(4):1446–1451. doi: 10.1128/jb.93.4.1446-1451.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higgins M. L. Release of sporangiospores by a strain of Actinoplanes. J Bacteriol. 1967 Sep;94(3):495–498. doi: 10.1128/jb.94.3.495-498.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hoeniger J. F., Van Iterson W., Van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. II. Electron microscopy of negatively stained material. J Cell Biol. 1966 Dec;31(3):603–618. doi: 10.1083/jcb.31.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KERRIDGE D., HORNE R. W., GLAUERT A. M. Structural components of flagella from Salmonella typhimurium. J Mol Biol. 1962 Apr;4:227–238. doi: 10.1016/s0022-2836(62)80001-1. [DOI] [PubMed] [Google Scholar]
  13. Keeler R. F., Ritchie A. E., Bryner J. H., Elmore J. The preparation and characterization of cell walls and the preparation of flagella of Vibrio fetus. J Gen Microbiol. 1966 Jun;43(3):439–454. doi: 10.1099/00221287-43-3-439. [DOI] [PubMed] [Google Scholar]
  14. LECHEVALIER H., HOLBERT P. E. ELECTRON MICROSCOPIC OBSERVATION OF THE SPORANGIAL STRUCTURE OF A STRAIN OF ACTINOPLANES. J Bacteriol. 1965 Jan;89:217–222. doi: 10.1128/jb.89.1.217-222.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LUFT J. H. Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol. 1961 Feb;9:409–414. doi: 10.1083/jcb.9.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lechevalier H. A., Lechevalier M. P., Holbert P. E. Electron microscopic observation of the sporangial structure of strains of Actinoplanaceae. J Bacteriol. 1966 Oct;92(4):1228–1235. doi: 10.1128/jb.92.4.1228-1235.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Olive L. S. The Protostelida--a new order of the Mycetozoa. Mycologia. 1967 Jan-Feb;59(1):1–29. [PubMed] [Google Scholar]
  18. Reichenbach H. Die wahre Natur der Myxobakterien- "Rhapidosomen". Arch Mikrobiol. 1967 Apr 17;56(4):371–383. [PubMed] [Google Scholar]
  19. Remsen C. C., Watson S. W., Waterbury J. B., Trüper H. G. Fine structure of Ectothiorhodospira mobilis Pelsh. J Bacteriol. 1968 Jun;95(6):2374–2392. doi: 10.1128/jb.95.6.2374-2392.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rieber M., Imaeda T. Production of tubules and bacteriophage-like particles in mycobacteria after bacitracin treatment. J Bacteriol. 1969 May;98(2):821–823. doi: 10.1128/jb.98.2.821-823.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ritchie A. E., Keeler R. F., Bryner J. H. Anatomical features of Vibrio fetus: Electron microscopic survey. J Gen Microbiol. 1966 Jun;43(3):427–438. doi: 10.1099/00221287-43-3-427. [DOI] [PubMed] [Google Scholar]
  22. SHARP D. G., ECKERT E. A., BEARD D., BEARD J. W. Morphology of the virus of avian erythromyeloblastic leucosis and a comparison with the agent of Newcastle disease. J Bacteriol. 1952 Feb;63(2):151–161. doi: 10.1128/jb.63.2.151-161.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SWANBECK G., FORSLIND B. A LOW-ANGLE X-RAY DIFFRACTION STUDY OF BACTERIAL FLAGELLA. Biochim Biophys Acta. 1964 Sep 25;88:422–429. doi: 10.1016/0926-6577(64)90198-6. [DOI] [PubMed] [Google Scholar]
  24. Vaituzis Z., Doetsch R. N. Relationship between cell wall, cytoplasmic membrane, and bacterial motility. J Bacteriol. 1969 Oct;100(1):512–521. doi: 10.1128/jb.100.1.512-521.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Iterson W., Hoeniger J. F., Van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. I. Electron microscopy of sectioned material. J Cell Biol. 1966 Dec;31(3):585–601. doi: 10.1083/jcb.31.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yamamoto T. Presence of rhapidosomes in various species of bacteria and their morphological characteristics. J Bacteriol. 1967 Nov;94(5):1746–1756. doi: 10.1128/jb.94.5.1746-1756.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES