Abstract
A model is developed for hemoglobin which depends on six Bohr groups per tetramer of hemoglobin. These six groups are assumed to be located in six regions between the four subunits of hemoglobin. When the Bohr groups are assumed to be perturbed in an asymmetrical manner on binding oxygen, these groups then generate the cooperative interactions of hemoglobin. This approach makes it possible to explain oxygen binding, the Bohr effect, specific salt effects, and aggregation effects in a unified manner.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANTONINI E., WYMAN J., BRUNORI M., BUCCI E., FRONTICELLI C., ROSSI-FANELLI A. STUDIES ON THE RELATIONS BETWEEN MOLECULAR AND FUNCTIONAL PROPERTIES OF HEMOGLOBIN. IV. THE BOHR EFFECT IN HUMAN HEMOGLOBIN MEASURED BY PROTON BINDING. J Biol Chem. 1963 Sep;238:2950–2957. [PubMed] [Google Scholar]
- Anderson N. M., Antonini E., Brunori M., Wyman J. Equilibrium of human hemoglobin with ethylisocyanide: further evidence for co-operativity in hemoglobin dimers. J Mol Biol. 1970 Jan 28;47(2):205–213. doi: 10.1016/0022-2836(70)90340-2. [DOI] [PubMed] [Google Scholar]
- Chanutin A., Curnish R. R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch Biochem Biophys. 1967 Jul;121(1):96–102. doi: 10.1016/0003-9861(67)90013-6. [DOI] [PubMed] [Google Scholar]
- Drysdale J. W., Olafsdottir E., Munro H. N. Effect of ribonucleic acid depletion on ferritin induction in rat liver. J Biol Chem. 1968 Feb 10;243(3):552–555. [PubMed] [Google Scholar]
- Pauling L. The Oxygen Equilibrium of Hemoglobin and Its Structural Interpretation. Proc Natl Acad Sci U S A. 1935 Apr;21(4):186–191. doi: 10.1073/pnas.21.4.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution: the atomic model. Nature. 1968 Jul 13;219(5150):131–139. doi: 10.1038/219131a0. [DOI] [PubMed] [Google Scholar]
- Perutz M. F., Muirhead H., Mazzarella L., Crowther R. A., Greer J., Kilmartin J. V. Identification of residues responsible for the alkaline Bohr effect in haemoglobin. Nature. 1969 Jun 28;222(5200):1240–1243. doi: 10.1038/2221240a0. [DOI] [PubMed] [Google Scholar]
- Roughton F. J. The oxygen equilibrium of mammalian hemoglobin. Some old and new physicochemical studies. J Gen Physiol. 1965 Sep;49(1 Suppl):105–126. doi: 10.1085/jgp.49.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simon S. R., Konigsberg W. H. Chemical modification of hemoglobins: a study of conformation restraint by internal bridging. Proc Natl Acad Sci U S A. 1966 Aug;56(2):749–756. doi: 10.1073/pnas.56.2.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
