Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1970 Dec;67(4):1703–1709. doi: 10.1073/pnas.67.4.1703

Translational Repression in the Arginine System of Escherichia coli*

William L McLellan 1, Henry J Vogel 1
PMCID: PMC283415  PMID: 4923118

Abstract

Translation of bacterial mRNA, divorced from transcription, has been obtained for enzymes of arginine synthesis; evidence has been acquired for repression by arginine at the level of translation. mRNAs for acetylornithinase and ornithine transcarbamylase were accumulated by arginine starvation of argR+ and argR- arginine auxotrophs derived from Escherichia coli K12. Further transcription was inhibited with rifampicin or miracil D, and enzyme formation was measured in the presence of either an excess of, or a restricted supply of, arginine. For the argR+ strain 961, little mRNA was found without starvation; for the argR- strain 977, a considerable amount of mRNA was demonstrated even without starvation. There was relatively little translation for the argR+ strain, but not for the argR- strain, in the presence of excess arginine, apparently due to an accelerated degradation of mRNA in the argR+ strain under repressive conditions.

Full text

PDF
1703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauerle R. H., Margolin P. A multifunctional enzyme complex in the tryptophan pathway of Salmonella typhimurium: comparison of polarity and pseudopolarity mutations. Cold Spring Harb Symp Quant Biol. 1966;31:203–214. doi: 10.1101/sqb.1966.031.01.028. [DOI] [PubMed] [Google Scholar]
  2. Baumberg S., Bacon D. F., Vogel H. J. Individually repressible enzymes specified by clustered genes of arginine synthesis. Proc Natl Acad Sci U S A. 1965 May;53(5):1029–1032. doi: 10.1073/pnas.53.5.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cline A. L., Bock R. M. Translational control of gene expression. Cold Spring Harb Symp Quant Biol. 1966;31:321–333. doi: 10.1101/sqb.1966.031.01.042. [DOI] [PubMed] [Google Scholar]
  4. Edlin G., Stent G. S., Baker R. F., Yanofsky C. Synthesis of a specific messenger RNA during amino acid starvation of Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):257–268. doi: 10.1016/0022-2836(68)90266-0. [DOI] [PubMed] [Google Scholar]
  5. Faanes R., Rogers P. Roles of arginine and canavanine in the synthesis and repression of ornithine transcarbamylase by Escherichia coli. J Bacteriol. 1968 Aug;96(2):409–420. doi: 10.1128/jb.96.2.409-420.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ito J. Effect of tryptophan starvation on the rate of translation of the tryptophan operon in Escherichia coli. Biochim Biophys Acta. 1970 Apr 15;204(2):624–626. doi: 10.1016/0005-2787(70)90183-8. [DOI] [PubMed] [Google Scholar]
  7. Kuwano M., Kwan C. N., Apirion D., Schlessinger D. Ribonuclease V of escherichia coli. I. Dependence on ribosomes and translocation. Proc Natl Acad Sci U S A. 1969 Oct;64(2):693–700. doi: 10.1073/pnas.64.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lavallé R., De Hauwer G. Messenger RNA synthesis during amino acid starvation in Escherichia coli. J Mol Biol. 1968 Oct 28;37(2):269–288. doi: 10.1016/0022-2836(68)90267-2. [DOI] [PubMed] [Google Scholar]
  10. Leisinger T., Vogel H. J. Repression by arginine in Escherichia coli: a comparison of arginyl transfer RNA profiles. Biochim Biophys Acta. 1969 Jun 17;182(2):572–574. doi: 10.1016/0005-2787(69)90212-3. [DOI] [PubMed] [Google Scholar]
  11. Leisinger T., Vogel R. H., Vogel H. J. Repression-dependent alteration of an arginine enzyme in Escherichia coli. Proc Natl Acad Sci U S A. 1969 Oct;64(2):686–692. doi: 10.1073/pnas.64.2.686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Margolin P., Bauerle R. H. Determinants for regulation and initiation of expression of tryptophan genes. Cold Spring Harb Symp Quant Biol. 1966;31:311–320. doi: 10.1101/sqb.1966.031.01.041. [DOI] [PubMed] [Google Scholar]
  13. Morikawa N., Imamoto F. Degradation of tryptophan messenger. On the degradation of messenger RNA for the tryptophan operon in Escherichia coli. Nature. 1969 Jul 5;223(5201):37–40. doi: 10.1038/223037a0. [DOI] [PubMed] [Google Scholar]
  14. Morse D. E., Mosteller R., Baker R. F., Yanofsky C. Direction of in vivo degradation of tryptophan messenger RNA--a correction. Nature. 1969 Jul 5;223(5201):40–43. doi: 10.1038/223040a0. [DOI] [PubMed] [Google Scholar]
  15. Mosteller R. D., Yanofsky C. Transcription of the tryptophan operon in Escherichia coli: rifampicin as an inhibitor of initiation. J Mol Biol. 1970 Mar;48(3):525–531. doi: 10.1016/0022-2836(70)90064-1. [DOI] [PubMed] [Google Scholar]
  16. Prescott L. M., Jones M. E. Modified methods for the determination of carbamyl aspartate. Anal Biochem. 1969 Dec;32(3):408–419. doi: 10.1016/s0003-2697(69)80008-4. [DOI] [PubMed] [Google Scholar]
  17. Sippel A., Hartmann G. Mode of action of rafamycin on the RNA polymerase reaction. Biochim Biophys Acta. 1968 Mar 18;157(1):218–219. doi: 10.1016/0005-2787(68)90286-4. [DOI] [PubMed] [Google Scholar]
  18. Stubbs J. D., Hall B. D. Effects of amino acid starvation upon constitutive tryptophan messenger RNA synthesis. J Mol Biol. 1968 Oct 28;37(2):303–312. doi: 10.1016/0022-2836(68)90269-6. [DOI] [PubMed] [Google Scholar]
  19. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  20. Venetianer P. Level of messenger RNA transcribed from the histidine operon in repressed, derepressed and histidine-starved Salmonella typhimurium. J Mol Biol. 1969 Oct 28;45(2):375–384. doi: 10.1016/0022-2836(69)90112-0. [DOI] [PubMed] [Google Scholar]
  21. Vogel H. J. REPRESSED AND INDUCED ENZYME FORMATION: A UNIFIED HYPOTHESIS. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):491–496. doi: 10.1073/pnas.43.6.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weinstein I. B., Carchman R., Marner E., Hirschberg E. Miracil D: effects on nucleic acid synthesis, protein synthesis, and enzyme induction in Escherichia coli. Biochim Biophys Acta. 1967 Jul 18;142(2):440–449. doi: 10.1016/0005-2787(67)90625-9. [DOI] [PubMed] [Google Scholar]
  23. YANOFSKY C. The tryptophan synthetase system. Bacteriol Rev. 1960 Jun;24(2):221–245. doi: 10.1128/br.24.2.221-245.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. di Mauro E., Synder L., Marino P., Lamberti A., Coppo A., Tocchini-Valentini G. P. Rifampicin sensitivity of the components of DNA-dependent RNA polymerase. Nature. 1969 May 10;222(5193):533–537. doi: 10.1038/222533a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES