Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1963 Dec;86(6):1326–1331. doi: 10.1128/jb.86.6.1326-1331.1963

BIOSYNTHESIS OF RIBOSE AND DEOXYRIBOSE IN PSEUDOMONAS SACCHAROPHILA1

Dexter D Fossitt a,2, I A Bernstein b
PMCID: PMC283649  PMID: 14086109

Abstract

Fossitt, Dexter D. (University of Michigan, Ann Arbor), and I. A. Bernstein. Biosynthesis of ribose and deoxyribose in Pseudomonas saccharophila. J. Bacteriol. 86:1326–1331. 1963.—The biosynthesis of ribose and deoxyribose in Pseudomonas saccharophila was studied by radioisotope-tracer techniques. Patterns of C14 in ribose isolated from the nucleic acids of cells grown on labeled glucose suggested that pentose was made by the pathway involving transaldolase and transketolase. When cells were grown on radioactive gluconate, the tracer patterns indicated the possibility of a new pathway for the biosynthesis of ribose. Isotopic patterns in deoxyribose, in general, were consistent with the pathway involving reduction of ribonucleotides to deoxyribonucleotides. Certain aspects of the data, however, were not explained by this known pathway.

Full text

PDF
1326

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHWELL G., HICKMAN J. Enzymatic formation of xylulose 5-phosphate from ribose 5-phosphate in spleen. J Biol Chem. 1957 May;226(1):65–76. [PubMed] [Google Scholar]
  2. BERNSTEIN I. A. Biosynthesis of ribose in Escherichia coli grown on C14-labeled glucose. J Biol Chem. 1956 Aug;221(2):873–878. [PubMed] [Google Scholar]
  3. BERNSTEIN I. A., FOSSITT D., SWEET D. Bacterial degradation of deoxyribose-C 14. J Biol Chem. 1958 Nov;233(5):1199–1202. [PubMed] [Google Scholar]
  4. BERNSTEIN I. A., FOSTER P. The metabolism of the nucleic acids in the skin of young rats. J Invest Dermatol. 1957 Dec;29(6):415–422. doi: 10.1038/jid.1957.117. [DOI] [PubMed] [Google Scholar]
  5. BERNSTEIN I. A. Fermentation of ribose-C14 by Lactobacillus pentosus. J Biol Chem. 1953 Nov;205(1):309–316. [PubMed] [Google Scholar]
  6. BERNSTEIN I. A., SWEET D. Biosynthesis of deoxyribose in intact Escherichia coli. J Biol Chem. 1958 Nov;233(5):1194–1198. [PubMed] [Google Scholar]
  7. BERNSTEIN I. A. Synthesis of ribose by the chick. J Biol Chem. 1953 Nov;205(1):317–329. [PubMed] [Google Scholar]
  8. BLOOM B., STETTEN M. R., STETTEN D., Jr Evaluation of catabolic pathways of glucose in mammalian systems. J Biol Chem. 1953 Oct;204(2):681–694. [PubMed] [Google Scholar]
  9. BOXER G. E., SHONK C. E. Deoxyribose5-phosphate metabolism by normal liver and malignant hepatoma. J Biol Chem. 1958 Sep;233(3):535–540. [PubMed] [Google Scholar]
  10. DOUDOROFF M., PALLERONI N. J., MACGEE J., OHARA M. Metabolism of carbohydrates by Pseudomonas saccharophila. I. Oxidation of fructose by intact cells and crude cell-free preparations. J Bacteriol. 1956 Feb;71(2):196–201. doi: 10.1128/jb.71.2.196-201.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ENTNER N., DOUDOROFF M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem. 1952 May;196(2):853–862. [PubMed] [Google Scholar]
  12. GHOSH D., BERNSTEIN I. A. Isotopic tracer studies on the biosynthesis of deoxyribose in the rat. Biochim Biophys Acta. 1963 May 28;72:1–9. [PubMed] [Google Scholar]
  13. HIATT H. H., LAREAU J. Studies of ribose metabolism. VIII. Pathways of ribose biosynthesis in vivo and in vitro in rat, mouse, and human tissues. J Biol Chem. 1960 May;235:1241–1245. [PubMed] [Google Scholar]
  14. HORECKER B. L., SMYRNIOTIS P. Z., KLENOW H. The formation of sedoheptulose phosphate. J Biol Chem. 1953 Dec;205(2):661–682. [PubMed] [Google Scholar]
  15. HORECKER B. L., SMYRNIOTIS P. Z. Phosphogluconic acid dehydrogenase from yeast. J Biol Chem. 1951 Nov;193(1):371–381. [PubMed] [Google Scholar]
  16. HORECKER B. L., SMYRNIOTIS P. Z. Purification and properties of yeast transaldolase. J Biol Chem. 1955 Feb;212(2):811–825. [PubMed] [Google Scholar]
  17. HORECKER B. L., SMYRNIOTIS P. Z., SEEGMILLER J. E. The enzymatic conversion of 6-phosphogluconate to ribulose-5-phosphate and ribose-5-phosphate. J Biol Chem. 1951 Nov;193(1):383–396. [PubMed] [Google Scholar]
  18. LANNING M. C., COHEN S. S. The mechanism of ribose formation in Escherichia coli. J Biol Chem. 1954 Mar;207(1):193–199. [PubMed] [Google Scholar]
  19. RACKER E. Enzymatic synthesis and breakdown of desoxyribose phosphate. J Biol Chem. 1952 May;196(1):347–365. [PubMed] [Google Scholar]
  20. REICHARD P., RUTBERG L. Formation of deoxycytidine 5'-phosphate from cytidine 5'-phosphate with enzymes from Escherichia coli. Biochim Biophys Acta. 1960 Jan 29;37:554–555. doi: 10.1016/0006-3002(60)90524-2. [DOI] [PubMed] [Google Scholar]
  21. WIAME J. M., DOUDOROFF M. Oxidative assimilation by Pseudomonas saccharophilia with C14-labeled substrates. J Bacteriol. 1951 Aug;62(2):187–193. doi: 10.1128/jb.62.2.187-193.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. WRIGHT E. M., SABLE H. Z., BAILEY J. L. Biosynthesis of pentose in Escherichia coli. Synthesis of deoxyribose in cells infected with bacteriophage. J Bacteriol. 1961 Jun;81:845–851. doi: 10.1128/jb.81.6.845-851.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES