Abstract
Streptomyces lavendulae S55-B1 gave two distinct variants at an unusual high frequency: one is a beta-lactamase-nonproducing variant and the other is an Arg- variant. All of the Arg- variants concomitantly had no, or only very low, beta-lactamase activity and were unable to form aerial mycelia or spores. There was no significant linkage between the beta-lactamase activity and the other nutritional requirement which was analyzed. Two of the Arg- variants spontaneously gave Arg+ revertants at a very low frequency. The revertants, however, did not recover the beta-lactamase activity. It is suggested that the beta-lactamase gene may be capable of transposition with inactivation of the arg gene occurring frequently by insertion of the transposed element. Covalently closed circular deoxyribonucleic acid from S55-B1 was not detected by either cesium chloride-ethidium bromide buoyant density centrifugation or agarose gel electrophoresis.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaij C., Borst P. The gel electrophoresis of DNA. Biochim Biophys Acta. 1972 May 10;269(2):192–200. doi: 10.1016/0005-2787(72)90426-1. [DOI] [PubMed] [Google Scholar]
- Benveniste R., Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2276–2280. doi: 10.1073/pnas.70.8.2276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delić V., Hopwood D. A., Friend E. J. Mutangenesis by N-methyl-N'-nitro-N-nitrosoguanidine (NTG) in Streptomyces coelicolor. Mutat Res. 1970 Feb;9(2):167–182. doi: 10.1016/0027-5107(70)90055-2. [DOI] [PubMed] [Google Scholar]
- Freeman R. F., Bibb M. J., Hopwood D. A. Chloramphenicol acetylransferase-independent chloramphenicol resistance in Streptomyces coelicolor A3(2). J Gen Microbiol. 1977 Feb;98(2):453–465. doi: 10.1099/00221287-98-2-453. [DOI] [PubMed] [Google Scholar]
- Hopwood D. A. Extrachromosomally determined antibiotic production. Annu Rev Microbiol. 1978;32:373–392. doi: 10.1146/annurev.mi.32.100178.002105. [DOI] [PubMed] [Google Scholar]
- Ogawara H., Horikawa S., Shimada-Miyoshi S., Yasuzawa K. Production and property of beta-lactamases in Streptomyces: comparison of the strains isolated newly and thirty years ago. Antimicrob Agents Chemother. 1978 May;13(5):865–870. doi: 10.1128/aac.13.5.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ogawara H., Nozaki S. Effect of acriflavine of the production of beta-lactamase in Streptomyces. J Antibiot (Tokyo) 1977 Apr;30(4):337–339. doi: 10.7164/antibiotics.30.337. [DOI] [PubMed] [Google Scholar]
- Ogawara H. Production and property of beta-lactamases in Streptomyces. Antimicrob Agents Chemother. 1975 Oct;8(4):402–408. doi: 10.1128/aac.8.4.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saedler H., Reif H. J., Hu S., Davidson N. IS2, a genetic element for turn-off and turn-on of gene activity in E. coli. Mol Gen Genet. 1974;132(4):265–289. doi: 10.1007/BF00268569. [DOI] [PubMed] [Google Scholar]
- Sermonti G., Petris A., Micheli M., Lanfaloni L. A factor involved in chloramphenicol resistance in Streptomyces coelicolor A3(2): its transfer in the absence of the fertility factor. J Gen Microbiol. 1977 Jun;100(2):347–353. doi: 10.1099/00221287-100-2-347. [DOI] [PubMed] [Google Scholar]
- Sermonti G., Petris A., Micheli M., Lanfaloni L. Chloramphenicol resistance in Streptomyces coelicolor A3(2): possible involvement of a transposable element. Mol Gen Genet. 1978 Aug 4;164(1):99–103. doi: 10.1007/BF00267604. [DOI] [PubMed] [Google Scholar]
- Shaw W. V., Hopwood D. A. Chloramphenicol acetylation in Streptomyces. J Gen Microbiol. 1976 May;94(1):159–166. doi: 10.1099/00221287-94-1-159. [DOI] [PubMed] [Google Scholar]