Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1980 Feb;17(2):129–131. doi: 10.1128/aac.17.2.129

Comparative in vitro activity of 1-oxa-beta-lactam (LY127935) and cefoperazone with other beta-lactam antibiotics against anaerobic bacteria.

M V Borobio, J Aznar, R Jimenez, F Garcia, E J Perea
PMCID: PMC283746  PMID: 6247966

Abstract

The in vitro activity of 1-oxa-beta-lactam (LY127935), cefoperazone (T-1551), cefuroxime, cefsulodin, cefaclor, cefotaxime, and cefoxitin on 85 anaerobic clinical isolates (30 Bacteroides, 30 Clostridium, 25 Peptococcaceae) was simultaneously determined by the agar dilution test in two different media, Brucella Agar (Difco Laboratories) and Wilkins-Chalgren agar. In Wilkins-Chalgren agar, 90% of Bacteroides were inhibited by (micrograms per milliliter): LY127935, 0.5; T-1551, 64; cefoxitin or cefuroxime, 8; cefsulodin or cefotaxime, 32; and cefaclor, 128. All Clostridia were inhibited in Wilkins-Chalgren by (micrograms per milliliter): LY127935, 4; T-1551, 2; cefoxitin, 6; cefuroxime, 0.12; cefsulodin, 0.5; cefaclor, 1; and cefotaxime, 8. All Peptococccaceae were inhibited by T-1551, cefsulodin or cefotaxime at 4 microgram/ml and by cefoxitin or cefuroxime at 1 to 2 microgram/ml. With cefaclor at 8 microgram/ml, 92% of strains were inhibited, and LY127935 at 16 microgram/ml only inhibited 64% of strains. LY127935 was the most active of the antibiotics tested against Bacteroides, showing good activity against Clostridia and poor activity on Peptococcaceae, whereas T-1551 was more active against Peptococccaceae and had similar activity against Clostridia and poor activity on Bacteroides. There are no significant differences between minimal inhibitory concentrations obtained in Brucella Agar and those obtained in Wilkins-Chalgren.

Full text

PDF
129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach V. T., Khurana M. M., Thadepalli H. In vitro activity of cefaclor against aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 1978 Feb;13(2):210–213. doi: 10.1128/aac.13.2.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chow A. W., Bednorz D. Comparative in vitro activity of newer cephalosporins against anaerobic bacteria. Antimicrob Agents Chemother. 1978 Nov;14(5):668–671. doi: 10.1128/aac.14.5.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hamilton-Miller J. M., Brumfitt W., Reynolds A. V. Cefotoxime (HR 756) a new cephalosporin with exceptional broad-spectrum activity in vitro. J Antimicrob Chemother. 1978 Sep;4(5):437–444. doi: 10.1093/jac/4.5.437. [DOI] [PubMed] [Google Scholar]
  4. Jones R. N., Fuchs P. C., Gavan T. L., Gerlach E. H., Barry A. L., Thornsberry C. Cefuroxime, a new parenteral cephalosporin: collaborative in vitro susceptibility comparison with cephalothin against 5,887 clinical bacterial isolates. Antimicrob Agents Chemother. 1977 Jul;12(1):47–50. doi: 10.1128/aac.12.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Neu H. C., Aswapokee N., Aswapokee P., Fu K. P. HR 756, a new cephalosporin active against gram-positive and gram-negative aerobic and anaerobic bacteria. Antimicrob Agents Chemother. 1979 Feb;15(2):273–281. doi: 10.1128/aac.15.2.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Neu H. C., Fu K. P. Cefuroxime, a beta-lactamase-resistant cephalosporin with a broad spectrum of gram-positive and -negative activity. Antimicrob Agents Chemother. 1978 Apr;13(4):657–664. doi: 10.1128/aac.13.4.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Perea E. J., Aznar J., Garcia-Iglesias M. C., Borobio M. V. Cefoxitin sodium activity against anaerobes: effect of the inoculum size, pH variation and different culture media. J Antimicrob Chemother. 1978 Jul;4(B):55–60. doi: 10.1093/jac/4.suppl_b.55. [DOI] [PubMed] [Google Scholar]
  9. Sutter V. L., Finegold S. M. Susceptibility of anaerobic bacteria to 23 antimicrobial agents. Antimicrob Agents Chemother. 1976 Oct;10(4):736–752. doi: 10.1128/aac.10.4.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wilkins T. D., Chalgren S. Medium for use in antibiotic susceptibility testing of anaerobic bacteria. Antimicrob Agents Chemother. 1976 Dec;10(6):926–928. doi: 10.1128/aac.10.6.926. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES