Abstract
Neisseria meningitidis SD1C exhibited a low tolerance to penicillin G (0.03 microgram/ml). Loss of viability in the absence of polyvinylpyrrolidone-40 and horse serum was independent of the concentration of antibiotic above the minimum inhibitory concentration, whereas the rate of bacteriolysis was concentration dependent. Penicillin-induced lysis was a secondary event in this organism. At low levels of penicillin G, growth characteristics, i.e., absorbancy changes, respiratory rate, and uptake of Mg2+, appeared normal during the first 90 min in penicillin; however, viability dropped dramatically. Additionally, total cell numbers remained constant while cell mass continued to increase at a rate normal for the population. The increase in cellular mass in the absence of cell division could be observed microscopically. Only one ultrastructural change induced by penicillin correlated with the loss in viability: the loss in continuity of the outer membrane with the peptidoglycan but only at the site of septum formation. This lesion did not occur when cells were grown in media supplemented with the protective agents polyvinylpyrrolidone-40 and horse serum. Under these conditions of growth and with relatively high levels of penicillin, constant viability was maintained, but cell division no longer occurred. Cell populations treated with penicillin in the presence of the protective agents became increasingly more dependent on the presence of these agents for total viability even in the absence of penicillin in the culture.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Archibald F. S., DeVoe I. W. Iron in Neisseria meningitidis: minimum requirements, effects of limitation, and characteristics of uptake. J Bacteriol. 1978 Oct;136(1):35–48. doi: 10.1128/jb.136.1.35-48.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumberg P. M., Strominger J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974 Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chin W. L., Lawson J. W. Effect of antibiotics on L-form induction of Neisseria meningitidis. Antimicrob Agents Chemother. 1976 Jun;9(6):1056–1065. doi: 10.1128/aac.9.6.1056. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVoe I. W. Egestion of degraded meningococci by polymorphonuclear leukocytes. J Bacteriol. 1976 Jan;125(1):258–266. doi: 10.1128/jb.125.1.258-266.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVoe I. W., Gilchrist J. E. Piliation and colonial morphology among laboratory strains of meningococci. J Clin Microbiol. 1978 Apr;7(4):379–384. doi: 10.1128/jcm.7.4.379-384.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeVoe I. W., Storm D. W., Gilchrist J. E. A study of phagocytosis of radio-labeled Staphylococcus epidermidis and on structural events during intracellular degradation. Can J Microbiol. 1973 Apr;19(4):525–530. doi: 10.1139/m73-084. [DOI] [PubMed] [Google Scholar]
- Devoe I. W., Gilchrist J. E. Release of endotoxin in the form of cell wall blebs during in vitro growth of Neisseria meningitidis. J Exp Med. 1973 Nov 1;138(5):1156–1167. doi: 10.1084/jem.138.5.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ericsson H. M., Sherris J. C. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand B Microbiol Immunol. 1971;217(Suppl):1+–1+. [PubMed] [Google Scholar]
- Hammes W. P. Biosynthesis of peptidoglycan in Gaffkya homari. The mode of action of penicillin G and mecillinam. Eur J Biochem. 1976 Nov 1;70(1):107–113. doi: 10.1111/j.1432-1033.1976.tb10961.x. [DOI] [PubMed] [Google Scholar]
- Horne D., Tomasz A. Tolerant response of Streptococcus sanguis to beta-lactams and other cell wall inhibitors. Antimicrob Agents Chemother. 1977 May;11(5):888–896. doi: 10.1128/aac.11.5.888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Spratt B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2999–3003. doi: 10.1073/pnas.72.8.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tomasz A. From penicillin-binding proteins to the lysis and death of bacteria: a 1979 view. Rev Infect Dis. 1979 May-Jun;1(3):434–467. doi: 10.1093/clinids/1.3.434. [DOI] [PubMed] [Google Scholar]
- Wegener W. S., Hebeler B. H., Morse S. A. Cell envelope of Neisseria gonorrhoeae: penicillin enhancement of peptidoglycan hydrolysis. Infect Immun. 1977 Dec;18(3):717–725. doi: 10.1128/iai.18.3.717-725.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westling-Häggström B., Elmros T., Normark S., Winblad B. Growth pattern and cell division in Neisseria gonorrhoeae. J Bacteriol. 1977 Jan;129(1):333–342. doi: 10.1128/jb.129.1.333-342.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yourassowsky E., Monsieur R. Cinétique de l'activité de la pénicilline G et de l'ampicilline sur Neisseria meningitidis. Acta Clin Belg. 1970;25(5):335–340. [PubMed] [Google Scholar]




