Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1980 May;17(5):789–797. doi: 10.1128/aac.17.5.789

Antibiotic resistance in Neisseria denitrificans.

C R MacKenzie, I J McDonald, K G Johnson
PMCID: PMC283877  PMID: 6901594

Abstract

An ampicillin-resistant strain of Neisseria denitrificans was produced by serial passage of the organisms in media containing increased concentrations of antibiotic. The 400-fold increase in resistance obtained was a relatively stable characteristic. Ampicillin resistance in this organism was apparently related to a loss or modification of the penicillin-binding proteins associated with the cytoplasmic membranes. Membranes isolated from the ampicillin-resistant strain bound significantly less radioactive penicillin than those isolated from the parent strain and revealed one major and three minor penicillin-binding proteins. All four penicillin-binding proteins were present in reduced amounts or had a decreased capacity for penicillin binding in the ampicillin-resistant cells. The increased resistance did not involve enzymic degradation of the antibiotic or a general reduction in the permeability of the outer layers of the cell. No difference in the amount of peptidoglycan present in the parent and ampicillin-resistant cells or in the gross chemical structure of the peptidoglycans of the two strains was observed.

Full text

PDF
789

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blumberg P. M., Strominger J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974 Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blumberg P. M., Strominger J. L. Isolation by covalent affinity chromatography of the penicillin-binding components from membranes of Bacillus subtilis. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3751–3755. doi: 10.1073/pnas.69.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  4. Buchanan C. E., Strominger J. L. Altered penicillin-binding components in penicillin-resistant mutants of Bacillus subtilis. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1816–1820. doi: 10.1073/pnas.73.6.1816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chase H. A., Shepherd S. T., Reynolds P. E. Studies on the penicillin-binding components of Bacillus megaterium. FEBS Lett. 1977 Apr 15;76(2):199–203. doi: 10.1016/0014-5793(77)80151-8. [DOI] [PubMed] [Google Scholar]
  6. Ghuysen J. M. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev. 1968 Dec;32(4 Pt 2):425–464. [PMC free article] [PubMed] [Google Scholar]
  7. Gustafsson P., Nordström K., Normark S. Outer penetration barrier of Escherichia coli K-12: kinetics of the uptake of gentian violet by wild type and envelope mutants. J Bacteriol. 1973 Nov;116(2):893–900. doi: 10.1128/jb.116.2.893-900.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guymon L. F., Sparling P. F. Altered crystal violet permeability and lytic behavior in antibiotic-resistant and -sensitive mutants of Neisseria gonorrhoeae. J Bacteriol. 1975 Nov;124(2):757–763. doi: 10.1128/jb.124.2.757-763.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson K. G., McDonald I. J. Peptidoglycan structure in cell walls of parental and filamentous Streptococcus cremoris HP. Can J Microbiol. 1974 Jul;20(7):905–913. doi: 10.1139/m74-140. [DOI] [PubMed] [Google Scholar]
  10. Johnson K., Dusart J., Campbell J. N., Ghuysen J. M. Exocellular beta-lactamases of Streptomyces albus G and strains R39 and K11. Antimicrob Agents Chemother. 1973 Feb;3(2):289–298. doi: 10.1128/aac.3.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  14. Leyh-Bouille M., Nakel M., Frère J. M., Johnson K., Ghuysen J. M., Nieto M., Perkins H. R. Penicillin-sensitive DD-carboxypeptidases from Streptomyces strains R39 and K11. Biochemistry. 1972 Mar 28;11(7):1290–1298. doi: 10.1021/bi00757a027. [DOI] [PubMed] [Google Scholar]
  15. MacKenzie C. R., McDonald I. J., Johnston K. G. Surcrose uptake by Neisseria denitrificans. Can J Microbiol. 1978 May;24(5):569–573. doi: 10.1139/m78-092. [DOI] [PubMed] [Google Scholar]
  16. Maness M. J., Sparling P. F. Multiple antibiotic resistance due to a single mutation in Neisseria gonorrhoeae. J Infect Dis. 1973 Sep;128(3):321–330. doi: 10.1093/infdis/128.3.321. [DOI] [PubMed] [Google Scholar]
  17. Park J. T., Griffith M. E., Stevenson I. Resistance to penicillin in mutants of a penicillinase-negative organism, Staphylococcus aureus H. J Bacteriol. 1971 Dec;108(3):1154–1160. doi: 10.1128/jb.108.3.1154-1160.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reynolds P. E., Shepherd S. T., Chase H. A. Identification of the binding protein which may be the target of penicillin action in Bacillus megaterium. Nature. 1978 Feb 9;271(5645):568–570. doi: 10.1038/271568a0. [DOI] [PubMed] [Google Scholar]
  19. Rodriguez W. J., Saz A. K. Differential binding of penicillin by membrane fractions from penicillin-susceptible and -resistant gonococci. Antimicrob Agents Chemother. 1978 Apr;13(4):589–597. doi: 10.1128/aac.13.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rodriguez W., Saz A. K. Possible mechanism of decreased susceptibility of Neisseria gonorrhoeae to penicillin. Antimicrob Agents Chemother. 1975 Jun;7(6):788–792. doi: 10.1128/aac.7.6.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spratt B. G. Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2999–3003. doi: 10.1073/pnas.72.8.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Spratt B. G., Jobanputra V. Mutants of Escherichia coli which lack a component of penicillin-binding protein 1 are viable. FEBS Lett. 1977 Jul 15;79(2):374–378. doi: 10.1016/0014-5793(77)80824-7. [DOI] [PubMed] [Google Scholar]
  23. Spratt B. G., Pardee A. B. Penicillin-binding proteins and cell shape in E. coli. Nature. 1975 Apr 10;254(5500):516–517. doi: 10.1038/254516a0. [DOI] [PubMed] [Google Scholar]
  24. Spratt B. G. Properties of the penicillin-binding proteins of Escherichia coli K12,. Eur J Biochem. 1977 Jan;72(2):341–352. doi: 10.1111/j.1432-1033.1977.tb11258.x. [DOI] [PubMed] [Google Scholar]
  25. Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
  26. Yocum R. R., Blumberg P. M., Strominger J. L. Purification and characterization of the thermophilic D-alanine carboxypeptidase from membranes of Bacillus stearothermophilus. J Biol Chem. 1974 Aug 10;249(15):4863–4871. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES