Abstract
The practical application of thienamycin, a novel beta-lactam antibiotic with a broad activity spectrum, was compromised by problems of instability. MK0787, N-formimidoyl thienamycin, does not have this liability. As reported, bacterial species resistant to most beta-lactam antibiotics, such as Pseudomonas aeurginosa, Serratis, Enterobacter, Enterococcus, and Bacteroides spp., are uniformly susceptible to MK0787, usually at one-half the inhibitory level of thienamycin. Bactericidal activity usually occurs at the minimal inhibitory concentration endpoint. Activity was reduced only at the highest inoculum densities tested and by a lessor factor than was observed with reference beta-lactam antibiotic active against P. aeruginosa and beta-lactamase-bearing strains. MK0787 exhibits a broad spectrum of in vivo activity when evaluated parenterally for efficacy against systemic infections in mice. The order of potency in vivo, 0.03 to 0.06 mg/kg for gram-positive species and 0.65 to 3.8 mg/kg for gram-negative infections including Pseudomonas, exceeded that of thienamycin and was at least 10-fold superior to reference beta-lactam antibiotics including two recently developed agents with antipseudomonal activity, cefotaxime and LY127935.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer A. W., Kirby W. M., Sherris J. C., Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966 Apr;45(4):493–496. [PubMed] [Google Scholar]
- Goldner M., Glass D. G., Fleming P. C. Spontaneous mutant with loss of beta-lactamase in Aerobacter cloacae. J Bacteriol. 1969 Feb;97(2):961–961. doi: 10.1128/jb.97.2.961-.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahan J. S., Kahan F. M., Goegelman R., Currie S. A., Jackson M., Stapley E. O., Miller T. W., Miller A. K., Hendlin D., Mochales S. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot (Tokyo) 1979 Jan;32(1):1–12. doi: 10.7164/antibiotics.32.1. [DOI] [PubMed] [Google Scholar]
- Leanza W. J., Wildonger K. J., Miller T. W., Christensen B. G. N-Acetimidoyl- and N-formimidoylthienamycin derivatives: antipseudomonal beta-lactam antibiotics. J Med Chem. 1979 Dec;22(12):1435–1436. doi: 10.1021/jm00198a001. [DOI] [PubMed] [Google Scholar]
- Matsen J. M., Koepcke M. J., Quie P. G. Evaluation of the Bauer-Kirby-Sherris-Turck single-disc diffusion method of antibiotic susceptibility testing. Antimicrob Agents Chemother (Bethesda) 1969;9:445–453. [PubMed] [Google Scholar]
- SUTHERLAND R., ROLINSON G. N. CHARACTERISTICS OF METHICILLIN-RESISTANT STAPHYLOCOCCI. J Bacteriol. 1964 Apr;87:887–899. doi: 10.1128/jb.87.4.887-899.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tally F. P., Jacobus N. V., Gorbach S. L. In vitro activity of thienamycin. Antimicrob Agents Chemother. 1978 Sep;14(3):436–438. doi: 10.1128/aac.14.3.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wallick H., Hendlin D. Cefoxitin, a semisynthetic cephamycin antibiotic: susceptibility studies. Antimicrob Agents Chemother. 1974 Jan;5(1):25–32. doi: 10.1128/aac.5.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weaver S. S., Bodey G. P., LeBlanc B. M. Thienamycin: new beta-lactam antibiotic with potent broad-spectrum activity. Antimicrob Agents Chemother. 1979 Apr;15(4):518–521. doi: 10.1128/aac.15.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]