Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1980 Jul;18(1):111–117. doi: 10.1128/aac.18.1.111

Regulatory properties of O-acetyl-L-serine sulfhydrylase of Cephalosporium acremonium: evidence of an isoenzyme and its importance in cephalosporin C biosynthesis.

H Döbeli, J Nüesch
PMCID: PMC283948  PMID: 7191238

Abstract

O-Acetyl-L-serine sulfhydrylase catalyzes the final step in the biosynthesis of cysteine from H2S and O-acetyl-L-serine in the fungus Cephalosporsium acremonium, a cephalosporin C-producing organism. We separated this enzyme from the closely related but less specific O-acetyl-L-homoserine sulfhydrylase and showed that O-acetyl-L-homoserine sulfhydrylase also catalyzes the formation of cysteine from O-acetyl-L-serine and H2S. The expression of O-acetyl-L-serine sulfhydrylase was regulated by exogenous methionine. In addition, this enzyme was inhibited by S-adenosyl-L-methionine and 5-formylpteroyl monoglutamic acid. The inhibition of both S-adenosyl-L-methionine and 5-formylpteroyl monoglutamic acid was noncompetitive. Results obtained with gel filtraton experiments in various buffer systems indicate an association-dissociation behavior of O-acetyl-L-serine sulfhydrylase.

Full text

PDF
111

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borum P. R., Monty K. J. Regulatory mutants and control of cysteine biosynthetic enzymes in Salmonella typhimurium. J Bacteriol. 1976 Jan;125(1):94–101. doi: 10.1128/jb.125.1.94-101.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breton A., Surdin-Kerjan Y. Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol. 1977 Oct;132(1):224–232. doi: 10.1128/jb.132.1.224-232.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burton E. G., Metzenberg R. L. Regulation of methionine biosythesis in Neurospora crassa. Arch Biochem Biophys. 1975 May;168(1):219–229. doi: 10.1016/0003-9861(75)90244-1. [DOI] [PubMed] [Google Scholar]
  4. Burton E., Selhub J., Sakami W. The substrate specificity of 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase. Biochem J. 1969 Mar;111(5):793–795. doi: 10.1042/bj1110793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caltrider P. G., Niss H. F. Role of methionine in cephalosporin synthesis. Appl Microbiol. 1966 Sep;14(5):746–753. doi: 10.1128/am.14.5.746-753.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DEMAIN A. L., NEWKIRK J. F., HENDLIN D. Effect of methionine, norleucine, and lysine derivatives on cephalosporin C formation in chemically defined media. J Bacteriol. 1963 Feb;85:339–344. doi: 10.1128/jb.85.2.339-344.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flavin M., Slaughter C. Synthesis of the succinic ester of homoserine, a new intermediate in the bacterial biosynthesis of methionine. Biochemistry. 1965 Jul;4(7):1370–1375. doi: 10.1021/bi00883a022. [DOI] [PubMed] [Google Scholar]
  8. Gröger D. Biochemische Aspekte der beta-Lactamantibiotica. Pharmazie. 1977 Jun 6;32(6):309–317. [PubMed] [Google Scholar]
  9. Hulanicka M. D., Hallquist S. G., Kredich N. M., Mojica-A T. Regulation of O-acetylserine sulfhydrylase B by L-cysteine in Salmonella typhimurium. J Bacteriol. 1979 Oct;140(1):141–146. doi: 10.1128/jb.140.1.141-146.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kerr D. S. O-acetylhomoserine sulfhydrylase from Neurospora. Purification and consideration of its function in homocysteine and methionine synthesis. J Biol Chem. 1971 Jan 10;246(1):95–102. [PubMed] [Google Scholar]
  11. Kisliuk R. L., Gaumont Y., Baugh C. M. Polyglutamyl derivatives of folate as substrates and inhibitors of thymidylate synthetase. J Biol Chem. 1974 Jul 10;249(13):4100–4103. [PubMed] [Google Scholar]
  12. Lemke P. A. A century of compounds and their effect on fungi. Mycopathol Mycol Appl. 1969 Jul 28;38(1):49–59. doi: 10.1007/BF02051675. [DOI] [PubMed] [Google Scholar]
  13. Lor K. L., Cossins E. A. Regulation of C metabolism by L-methionine in Saccharomyces cerevisiae. Biochem J. 1972 Dec;130(3):773–783. doi: 10.1042/bj1300773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paszewski A., Grabski J. Enzymatic lesions in methionine mutants of Aspergillus nidulans: role and regulation of an alternative pathway for cysteine and methionine synthesis. J Bacteriol. 1975 Nov;124(2):893–904. doi: 10.1128/jb.124.2.893-904.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paszewski A., Grabski J. Regulation of S-amino acids biosynthesis in Aspergillus nidulans. Role of cysteine and-or homocysteine as regulatory effectors. Mol Gen Genet. 1974;132(4):307–320. doi: 10.1007/BF00268571. [DOI] [PubMed] [Google Scholar]
  16. Pieniazek N. J., Bal J., Balbin E., Stepién P. P. An Aspergillus nidulans mutant lacking serine transacetylase: evidence for two pathways of cysteine biosynthesis. Mol Gen Genet. 1974;132(4):363–366. doi: 10.1007/BF00268575. [DOI] [PubMed] [Google Scholar]
  17. Pieniazek N. J., Kowalska I. M., Stepień P. P. Deficiency in methionine adenosyltransferase resulting in limited repressibility of methionine biosynthetic enzymes in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 22;126(4):367–374. doi: 10.1007/BF00269446. [DOI] [PubMed] [Google Scholar]
  18. Pieniazek N., Stepień P. P., Paszewski A. An Aspergillus nidulans mutant lacking cystathionine -synthase: identity of L-serine sulfhydrylase with cystathionine -synthase and its distinctness from O-acetyl-L-serine sulfhydrylase. Biochim Biophys Acta. 1973 Jan 24;297(1):37–47. doi: 10.1016/0304-4165(73)90047-0. [DOI] [PubMed] [Google Scholar]
  19. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Selhub J., Savin M. A., Sakami W., Flavin M. Synchronization of converging metabolic pathways: activation of the Cystathionine gamma-synthase of Neurospora crassa by methyltetrahydrofolate. Proc Natl Acad Sci U S A. 1971 Feb;68(2):312–314. doi: 10.1073/pnas.68.2.312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Steień P. P., Pieniqzek N. J., Bal J., Morzycka E. Cysteine biosynthesis in Aspergillus nidulans. Acta Microbiol Pol A. 1975;7(4):201–210. [PubMed] [Google Scholar]
  22. Surdin-Kerjan Y., Cherest H., De Robichon-Szulmajster H. Regulation of methionine synthesis in Saccharomyces cerevisiae operates through independent signals: methionyl-tRNAmet and S-adenosylmethionine. Acta Microbiol Acad Sci Hung. 1976;23(2):109–120. [PubMed] [Google Scholar]
  23. Yamagata S., Takeshima K., Naiki N. Evidence for the identity of O-acetylserine sulfhydrylase with O-acetylhomoserine sulfhydrylase in yeast. J Biochem. 1974 Jun;75(6):1221–1229. doi: 10.1093/oxfordjournals.jbchem.a130505. [DOI] [PubMed] [Google Scholar]
  24. Zelikson R., Luzzati M. Mitochondrial and cytoplasmic distribution in Saccharmoyces cerevisiae of enzymes involved in folate-coenzyme-mediated one-carbon-group transfer. A genetic and biochemical study of the enzyme deficiencies in mutants tmp3 and ade3. Eur J Biochem. 1977 Sep 15;79(1):285–292. doi: 10.1111/j.1432-1033.1977.tb11808.x. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES