Abstract
Copper complexes of 2,2'-bipyridyl and related compounds and CuSO4 inhibited the growth of paracoccus denitrificans. The copper(I) complex of 2,9-dimethyl-1,10-phenanthroline [Cu(DMP)2NO3] showed the highest activity, whereas the copper(II) complex of 1,10-phenanthroline and CuSO4 inhibited the growth to a lesser extent. The uncomplexed ligands (1,10-phenanthroline and 2,9-dimethyl-1,10-phenanthroline) showed little activity, but in the presence of noninhibitory amounts of CuSO4 this activity increased markedly. Copper ions therefore proved to be essential for the growth-inhibitor effect. The extent of inhibition appeared to be strongly dependent on the initial cell density and on the growth medium. No selective inhibition of deoxyribonucleic acid, ribonucleic acid, or protein synthesis was observed with Cu(DMP)2NO3. Respiratory electron transport of P. denitrificans appeared to be strongly inhibited by Cu(DMP)2NO3 and to a somewhat lesser extent by CuSO4. Both aerobic and anaerobic respirations were inhibited to the same extent, and from the cytochrome redox kinetics it is concluded that the site of this inhibition in the respiratory electron transport chain must be located before cytochrome b. Cu(DMP)2NO3 did not significantly influence the H+/O ratio with whole cells of P. denitrificans, suggesting that the efficiency of oxidative phosphorylation is not affected by CU(DMP)2NO3. Growing cultures of P. denitrificans showed a decrease in intracellular potassium ion content in the presence of increasing amounts of Cu(DMP)2NO3. It is concluded that interference with the cytoplasmic membrane, resulting in inhibition of respiratory electron transport, probably constitutes the main mode of action of copper complexes of 2,2'-bipyridyl analogs on P. denitrificans.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cedeno-Maldonado A., Swader J. A. The cupric ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts. Plant Physiol. 1972 Dec;50(6):698–701. doi: 10.1104/pp.50.6.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- D'Aurora V., Stern A. M., Sigman D. S. 1,10-Phenanthroline-cuprous ion complex, a potent inhibitor of DNA and RNA polymerases. Biochem Biophys Res Commun. 1978 Feb 28;80(4):1025–1032. doi: 10.1016/0006-291x(78)91348-7. [DOI] [PubMed] [Google Scholar]
- Giotta G. J. The effect of (o-phenanthroline)2-cupric sulfate on several properties associated with (N-A+ + K+)-dependent adenosine triphosphatase. Arch Biochem Biophys. 1977 Apr 30;180(2):504–508. doi: 10.1016/0003-9861(77)90065-0. [DOI] [PubMed] [Google Scholar]
- Huang W., Askari A. Na+,K+-ATPase: on the nature of the "cross-linked" subunits obtained in the presence of o-phenanthroline and cupric ion. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1314–1319. doi: 10.1016/0006-291x(78)90331-5. [DOI] [PubMed] [Google Scholar]
- John P., Whatley F. R. Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans. Biochim Biophys Acta. 1970 Sep 1;216(2):342–352. doi: 10.1016/0005-2728(70)90225-2. [DOI] [PubMed] [Google Scholar]
- John P., Whatley F. R. Paracoccus denitrificans and the evolutionary origin of the mitochondrion. Nature. 1975 Apr 10;254(5500):495–498. doi: 10.1038/254495a0. [DOI] [PubMed] [Google Scholar]
- Kobashi K. Catalytic oxidation of sulfhydryl groups by o-phenanthroline copper complex. Biochim Biophys Acta. 1968 May;158(2):239–245. doi: 10.1016/0304-4165(68)90136-0. [DOI] [PubMed] [Google Scholar]
- Kobashi K., Horecker B. L. Reversible inactivation of rabbit muscle aldolase by ophenanthroline. Arch Biochem Biophys. 1967 Jul;121(1):178–186. doi: 10.1016/0003-9861(67)90022-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Liang S. M., Winter C. G. Digitonin-induced changes in subunit arrangement in relation to some in vitro activities of the (Na+,K+)-ATPase. J Biol Chem. 1977 Nov 25;252(22):8278–8284. [PubMed] [Google Scholar]
- Meijer E. M., Schuitenmaker M. G., Boogerd F. C., Wever R., Stouthamer A. H. Effects induced by rotenone during aerobic growth of Paracoccus denitrificans in continuous culture. Changes in energy conservation and electron transport associated with NADH dehydrogenase. Arch Microbiol. 1978 Nov 13;119(2):119–127. doi: 10.1007/BF00964262. [DOI] [PubMed] [Google Scholar]
- Meijer E. M., van Verseveld H. W., van der Beek E. G., Stouthamer A. H. Energy conservation during aerobic growth in Paracoccus denitrificans. Arch Microbiol. 1977 Feb 4;112(1):25–34. doi: 10.1007/BF00446650. [DOI] [PubMed] [Google Scholar]
- Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
- Oxford J. S., Perrin D. D. Inhibition of the particle-associated RNA-dependent RNA polymerase activity of influenza viruses by chelating agents. J Gen Virol. 1974 Apr;23(1):59–71. doi: 10.1099/0022-1317-23-1-59. [DOI] [PubMed] [Google Scholar]
- Salhany J. M., Swanson J. C., Cordes K. A., Gaines S. B., Gaines K. C. Evidence suggesting direct oxidation of human erythrocyte membrane sulfhydryls by copper. Biochem Biophys Res Commun. 1978 Jun 29;82(4):1294–1299. doi: 10.1016/0006-291x(78)90328-5. [DOI] [PubMed] [Google Scholar]
- Valenzuela P., Morris R. W., Faras A., Levinson W., Rutter W. J. Are all nucleotidyl transferases metalloenzymes? Biochem Biophys Res Commun. 1973 Aug 6;53(3):1036–1041. doi: 10.1016/0006-291x(73)90196-4. [DOI] [PubMed] [Google Scholar]
- Van Verseveld H. W., Stouthamer A. H. Electron-transport chain and coupled oxidative phosphorylation in methanol-grown Paracoccus denitrificans. Arch Microbiol. 1978 Jul;118(1):13–20. doi: 10.1007/BF00406068. [DOI] [PubMed] [Google Scholar]
- Witholt B., Boekhout M., Brock M., Kingma J., Heerikhuizen H. V., Leij L. D. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal Biochem. 1976 Jul;74(1):160–170. doi: 10.1016/0003-2697(76)90320-1. [DOI] [PubMed] [Google Scholar]
- de Vries W., Stouthamer A. H. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. J Bacteriol. 1968 Aug;96(2):472–478. doi: 10.1128/jb.96.2.472-478.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
