Abstract
The minimal inhibitory concentrations of antituberculosis and antileprosy drugs were determined for Mycobacterium aurum. The concentrations that reduced the final yield of bacteriophage D29R1 by 50% and the time during the replication cycle at which the drugs completely inhibited phage production were estimated. THe 50% inhibitory concentration/minimal inhibitory concentration ratios were close to 1.0 for clofazimine, colistin, rifampin, and streptomycin; these ratios were high for dapsone (diaminodiphenylsulfone) and isoniazid. Ethambutol (minimal inhibitory concentration, 1.0 micrograms/ml) was without effect on viral growth.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- David H. L., Clavel S., Clement F., Meyer L., Draper P., Burdett I. D. Interaction of Mycobacterium leprae and mycobacteriophage D29. Ann Microbiol (Paris) 1978 Nov-Dec;129 B(4):561–570. [PubMed] [Google Scholar]
- David H. L., Clément F., Meyer L. Adsorption of mycobacteriophage D29 on Mycobacterium leprae. Ann Microbiol (Paris) 1978 May-Jun;129(4):563–566. [PubMed] [Google Scholar]
- FORBES M., KUCK N. A., PEETS E. A. EFFECT OF ETHAMBUTOL ON NUCLEIC ACID METABOLISM IN MYCOBACTERIUM SMEGMATIS AND ITS REVERSAL BY POLYAMINES AND DIVALENT CATIONS. J Bacteriol. 1965 May;89:1299–1305. doi: 10.1128/jb.89.5.1299-1305.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freese E., Sklarow S., Freese E. B. DNA damage caused by antidepressant hydrazines and related drugs. Mutat Res. 1968 May-Jun;5(3):343–348. doi: 10.1016/0027-5107(68)90004-3. [DOI] [PubMed] [Google Scholar]
- GALE G. R., MCLAIN H. H. EFFECT OF ETHAMBUTOL ON CYTOLOGY OF MYCOBACTERIUM SMEGMATIS. J Bacteriol. 1963 Oct;86:749–756. doi: 10.1128/jb.86.4.749-756.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koike M., Iida K., Matsuo T. Electron microscopic studies on mode of action of polymyxin. J Bacteriol. 1969 Jan;97(1):448–452. doi: 10.1128/jb.97.1.448-452.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy-Frebault V., David H. L. Mutations affecting pigment synthesis in Mycobacterium aurum. J Gen Microbiol. 1979 Dec;115(2):317–323. doi: 10.1099/00221287-115-2-317. [DOI] [PubMed] [Google Scholar]
- Morrison N. E., Marley G. M. Clofazimine binding studies with deoxyribonucleic acid. Int J Lepr Other Mycobact Dis. 1976 Oct-Dec;44(4):475–481. [PubMed] [Google Scholar]
- TOKUNAGA T., SELLERS M. I. STREPTOMYCIN INDUCTION OF PREMATURE LYSIS OF BACTERIOPHAGE-INFECTED MYCOBACTERIA. J Bacteriol. 1965 Feb;89:537–538. doi: 10.1128/jb.89.2.537-538.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TOMIZAWA J. I., SUNAKAWA S. The effect of chloramphenicol on deoxyribonucleic acid synthesis and the development of resistance to ultraviolet irradiation in E. coli infected with bacteriophage T2. J Gen Physiol. 1956 Mar 20;39(4):553–565. doi: 10.1085/jgp.39.4.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takayama K., Armstrong E. L., Kunugi K. A., Kilburn J. O. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother. 1979 Aug;16(2):240–242. doi: 10.1128/aac.16.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takayama K., Wang L., David H. L. Effect of isoniazid on the in vivo mycolic acid synthesis, cell growth, and viability of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1972 Jul;2(1):29–35. doi: 10.1128/aac.2.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]