Abstract
Disposition of [14C]SCE-1365 was studied in rats and dogs after intramuscular or intravenous injection. The plasma level of [14C]SCE-1365 peaked at 15 min after intramuscular administration and declined rapidly to give half-lives of 27 and 39 min, respectively, in rats and dogs. After intravenous dosage, half-lives were 22 and 32 min, respectively, in rats and dogs. In both animals, the plasma levels of 14C were made up largely of unchanged antibiotic. Binding to plasma protein was 91 and 31%, respectively, in rats and dogs. Tissue levels of [14C]SCE-1365 administered intramuscularly to rats peaked at 15 min and were highest in the kidney and lowest in the brain, with plasma, liver, lung, heart, intestinal wall, and adrenal gland occupying intermediary positions in the order listed. The concentration of [14C]SCE-1365 in erythrocytes was very low, as was the level of the antibiotic in rat fetuses. The milk of rats given [14C]SCE-1365 intramuscularly contained detectable levels of 14C. [14C]SCE-1365 was completely eliminated from the bodies of rats and dogs within 24 to 48 h. In both animals, a large amount of the dosed 14C was excreted in urine as unaltered antibiotic. The remainder was eliminated in the feces via bile. In rats, [14C]SCE-1365 was eliminated by both glomerular filtration (33%) and tubular secretion (67%). An active transport process appeared to be involved in biliary excretion in rats.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Hoehn M. M., Murphy H. W., Pugh C. T., Davis N. E. Paper chromatographic techniques for the determination of cephalothin and desacetylcephalothin in body fluids. Appl Microbiol. 1970 Nov;20(5):734–736. doi: 10.1128/am.20.5.734-736.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KLEIN J. O., EICKHOFF T. C., TILLES J. G., FINLAND M. CEPHALOTHIN: ACTIVITY IN VITRO, ABSORPTION AND EXCRETION IN NORMAL SUBJECTS AND CLINICAL OBSERVATIONS IN 40 PATIENTS. Am J Med Sci. 1964 Dec;248:640–656. [PubMed] [Google Scholar]
- Kaplan K., Reisberg B. E., Weinstein L. Cephaloridine: antimicrobial activity and pharmacologic behavior. Am J Med Sci. 1967 Jun;253(6):667–674. [PubMed] [Google Scholar]
- Kozatani J., Okui M., Noda K., Ogino T., Noguchi H. Cefazolin, a new semisynthetic cephalosporin antibiotic. V. Distribution of cefazolin- 14 C in mice and rats after parenteral administration. Chem Pharm Bull (Tokyo) 1972 Jun;20(6):1105–1113. doi: 10.1248/cpb.20.1105. [DOI] [PubMed] [Google Scholar]
- LEE C. C., HERR E. B., Jr, ANDERSON R. C. Pharmacological and toxicological studies on cephalotin. Clin Med (Northfield) 1963 Jun;70:1123–1138. [PubMed] [Google Scholar]
- MALVIN R. L., WILDE W. S., SULLIVAN L. P. Localization of nephron transport by stop flow analysis. Am J Physiol. 1958 Jul;194(1):135–142. doi: 10.1152/ajplegacy.1958.194.1.135. [DOI] [PubMed] [Google Scholar]
- Matsuzaki M., Matsumoto H., Ochiai K., Tashiro Y., Hino M. [Absorption, distribution and excretion of 14C-cefatrizine (14C-S-640 P) in rat (author's transl)]. Jpn J Antibiot. 1976 Apr;29(4):391–402. [PubMed] [Google Scholar]
- McCloskey R. V., Terry E. E., McCracken A. W., Sweeney M. J., Forland M. F. Effect of hemodialysis and renal failure on serum and urine concentrations of cephapirin sodium. Antimicrob Agents Chemother. 1972 Feb;1(2):90–93. doi: 10.1128/aac.1.2.90. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller A. K., Celozzi E., Kong Y., Pelak B. A., Hendlin D., Stapley E. O. Cefoxitin, a semisynthetic cephamycin antibiotic: in vivo evaluation. Antimicrob Agents Chemother. 1974 Jan;5(1):33–37. doi: 10.1128/aac.5.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakai Y., Kanai Y., Fugono T., Tanayama S. Metabolic fate of cephacetrile after parenteral administration in rats and rabbits. J Antibiot (Tokyo) 1976 Jan;29(1):81–90. doi: 10.7164/antibiotics.29.81. [DOI] [PubMed] [Google Scholar]
- Nightingale C. H., Greene D. S., Quintiliani R. Pharmacokinetics and clinical use of cephalosporin antibiotics. J Pharm Sci. 1975 Dec;64(12):1899–1926. doi: 10.1002/jps.2600641202. [DOI] [PubMed] [Google Scholar]
- Nishida M., Murakawa T., Kamimura T., Okada N., Sakamoto H., Fukada S., Nakamoto S., Yokota Y., Miki K. In vitro and in vivo evaluation of ceftezole, a new cephalosporin derivative. Antimicrob Agents Chemother. 1976 Jul;10(1):1–13. doi: 10.1128/aac.10.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishida M., Murakawa T., Kamimura T., Okada N., Sakamoto H. Laboratory evaluation of FR10612, a new oral cephalosporin derivative. J Antibiot (Tokyo) 1976 Apr;29(4):444–459. doi: 10.7164/antibiotics.29.444. [DOI] [PubMed] [Google Scholar]
- Ochiai M., Aki O., Morimoto A., Okada T., Matsushita Y. New cephalosporin derivatives with high antibacterial activities. Chem Pharm Bull (Tokyo) 1977 Nov;25(11):3115–3117. doi: 10.1248/cpb.25.3115. [DOI] [PubMed] [Google Scholar]
- Rein M. F., Westervelt F. B., Sande M. A. Pharmacodynamics of cefazolin in the presence of normal and impaired renal function. Antimicrob Agents Chemother. 1973 Sep;4(3):366–371. doi: 10.1128/aac.4.3.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu K., Nishimura H. Problems in the bio-assay of orally administered cephaloglycin in biological fluids and method for the detection of its metabolite, desacetylcephaloglycin. J Antibiot (Tokyo) 1970 Apr;23(4):216–222. doi: 10.7164/antibiotics.23.216. [DOI] [PubMed] [Google Scholar]
- Singhvi S. M., Heald A. F., Schreiber E. C. Pharmacokinetics of cephalosporin antibiotics: protein-binding considerations. Chemotherapy. 1978;24(3):121–133. doi: 10.1159/000237771. [DOI] [PubMed] [Google Scholar]
- Sullivan H. R., Billings R. E., McMahon R. E. Metabolism of D-cephaloglycin-14C and L-cephaloglycin-14C in the rat. J Antibiot (Tokyo) 1969 Jan;22(1):27–33. doi: 10.7164/antibiotics.22.27. [DOI] [PubMed] [Google Scholar]
- Tanayama S., Fujita T., Shirakawa Y., Suzuoki Z. Metabolic fate of 5-ethoxycarbonyl-3-morpholinosydnonimine (SIN-10). 1. Absorption, excretion and tissue distribution in rats and mice. Jpn J Pharmacol. 1970 Sep;20(3):413–423. doi: 10.1254/jjp.20.413. [DOI] [PubMed] [Google Scholar]
- Tanayama S., Kondo T., Kanai Y. Metabolic fate of SCE-963, a new broad-spectrum cephalosporin, after parenteral administration in rats and dogs. J Antibiot (Tokyo) 1978 Jul;31(7):703–711. doi: 10.7164/antibiotics.31.703. [DOI] [PubMed] [Google Scholar]
- Tanayama S., Momose S., Kanai Y., Shirakawa Y. Metabolism of 8-chloro-6-phenyl-4H-s-triazolo(4,3-a)-(1,4)benzodiazepine (D-40TA), a new central depressant. IV. Placental transfer and excretion in milk in rats. Xenobiotica. 1974 Apr;4(4):219–227. doi: 10.3109/00498257409062540. [DOI] [PubMed] [Google Scholar]
- Tanayama S., Shirakawa Y., Kanai Y., Suzuoki Z. Metabolism of 8-chloro-6-phenyl-4H-s-triazolo(4,3-a)(1,4)-benzodiazepine (D-40TA), a new central depressant. I. Absorption, distribution and excretion in rats. Xenobiotica. 1974 Jan;4(1):33–47. doi: 10.3109/00498257409052088. [DOI] [PubMed] [Google Scholar]
- Tanayama S., Yoshida K., Kanai Y. Metabolic fate of SCE-129, a new antipseudomonal cephalosporin, after parenteral administration in rats and dogs. Antimicrob Agents Chemother. 1978 Jul;14(1):137–143. doi: 10.1128/aac.14.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WILLIAMSON H. E., SKULAN T. W., SHIDEMAN F. E. Effects of adrenalectomy and desoxycorticosterone on stop-flow patterns of sodium and potassium in the rat. J Pharmacol Exp Ther. 1961 Jan;131:49–55. [PubMed] [Google Scholar]
