Abstract
It has been suggested that the microbicidal effect of metronidazole is mediated by an intermediate in nitro group reduction. We have found that the addition of Escherichia coli enhances the lethal effect of metronidazole on Bacillus fragilis and suggest that this intermediate may form in one bacteria and kill another. Because acetamide forms during the reduction of metronidazole, we examined the possibility that the same partially reduced intermediate in metronidazole reduction may be both an intermediate in the formation of acetamide and the ultimate reactive form of metronidazole which is responsible for its bactericidal action. Thus, we determined the relationship between bacterial survival and the formation of acetamide when cultures of B. fragilis, Clostridium perfringens, and E. coli were incubated anaerobically in the presence of metronidazole. We found that the log of the early bacterial survival was proportional to the formation of acetamide. The rate of loss of metronidazole was not dependent on the concentration of bacteria in the medium, suggesting that any proposed intermediate formed at a rate which was proportional only to the concentration of metronidazole.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams G. E., Clarke E. D., Jacobs R. S., Stratford I. J., Wallace R. G., Wardman P., Watts M. E. Mammalian cell toxicity of nitro compounds : dependence upon reduction potential. Biochem Biophys Res Commun. 1976 Oct 4;72(3):824–829. doi: 10.1016/s0006-291x(76)80207-0. [DOI] [PubMed] [Google Scholar]
- Adams G. E., Flockhart I. R., Smithen C. E., Stratford I. J., Wardman P., Watts M. E. Electron-affinic sensitization. VII. A correlation between structures, one-electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. Radiat Res. 1976 Jul;67(1):9–20. [PubMed] [Google Scholar]
- Bahnemann D., Basaga H., Dunlop J. R., Searle A. J., Willson R. L. Metronidazole (Flagyl), misonidazole (Ro 07-0582), iron, zinc and sulphur compounds in cancer therapy. Br J Cancer Suppl. 1978 Jun;3:16–19. [PMC free article] [PubMed] [Google Scholar]
- Chin J. B., Sheinin D. M., Rauth A. M. Screening for the mutagenicity of nitro-group containing hypoxic cell radiosensitizers using Salmonella typhimurium strains TA 100 and TA98. Mutat Res. 1978 Sep;58(1):1–10. [PubMed] [Google Scholar]
- Edwards D. I., Dye M., Carne H. The selective toxicity of antimicrobial nitroheterocyclic drugs. J Gen Microbiol. 1973 May;76(1):135–145. doi: 10.1099/00221287-76-1-135. [DOI] [PubMed] [Google Scholar]
- Ings R. M., McFadzean J. A., Ormerod W. E. The mode of action of metronidazole in Trichomonas vaginalis and other micro-organisms. Biochem Pharmacol. 1974 May 1;23(9):1421–1429. doi: 10.1016/0006-2952(74)90362-1. [DOI] [PubMed] [Google Scholar]
- Knight R. C., Skolimowski I. M., Edwards D. I. The interaction of reduced metronidazole with DNA. Biochem Pharmacol. 1978;27(17):2089–2093. doi: 10.1016/0006-2952(78)90277-0. [DOI] [PubMed] [Google Scholar]
- Koch R. L., Chrystal E. J., Beaulieu B. B., Jr, Goldman P. Acetamide--a metabolite of metronidazole formed by the intestinal flora. Biochem Pharmacol. 1979 Dec 15;28(24):3611–3615. doi: 10.1016/0006-2952(79)90407-6. [DOI] [PubMed] [Google Scholar]
- Koch R. L., Goldman P. The anaerobic metabolism of metronidazole forms N-(2-hydroxyethyl)-oxamic acid. J Pharmacol Exp Ther. 1979 Mar;208(3):406–410. [PubMed] [Google Scholar]
- LaRusso N. F., Tomasz M., Müller M., Lipman R. Interaction of metronidazole with nucleic acids in vitro. Mol Pharmacol. 1977 Sep;13(5):872–882. [PubMed] [Google Scholar]
- Lindmark D. G., Müller M. Antitrichomonad action, mutagenicity, and reduction of metronidazole and other nitroimidazoles. Antimicrob Agents Chemother. 1976 Sep;10(3):476–482. doi: 10.1128/aac.10.3.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mohindra J. K., Rauth A. M. Increased cell killing by metronidazole and nitrofurazone of hypoxic compared to aerobic mammalian cells. Cancer Res. 1976 Mar;36(3):930–936. [PubMed] [Google Scholar]
- Peterson F. J., Mason R. P., Hovsepian J., Holtzman J. L. Oxygen-sensitive and -insensitive nitroreduction by Escherichia coli and rat hepatic microsomes. J Biol Chem. 1979 May 25;254(10):4009–4014. [PubMed] [Google Scholar]
- Prince H. N., Grunberg E., Titsworth E., DeLorenzo W. F. Effects of l-(2-nitro-l-imidazolyl)-3-methoxy-2-propanol and 2-methyl-5-nitroimidazole-l-ethanol against anaerobic and aerobic bacteria and protozoa. Appl Microbiol. 1969 Nov;18(5):728–730. doi: 10.1128/am.18.5.728-730.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralph E. D., Clarke D. A. Inactivation of metronidazole by anaerobic and aerobic bacteria. Antimicrob Agents Chemother. 1978 Sep;14(3):377–383. doi: 10.1128/aac.14.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rustia M., Shubik P. Experimental induction of hepatomas, mammary tumors, and other tumors with metronidazole in noninbred Sas:MRC(WI)BR rats. J Natl Cancer Inst. 1979 Sep;63(3):863–868. doi: 10.1093/jnci/63.3.863. [DOI] [PubMed] [Google Scholar]
