Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1980 Nov;18(5):822–828. doi: 10.1128/aac.18.5.822

Growth and antifungal homoazasterol production in Geotrichum flavo-brunneum.

R J Rodriguez, L W Parks
PMCID: PMC284097  PMID: 7192535

Abstract

The growth cycle and production of 15-aza-24-methylene-8, 14-cholestadiene-3 beta-ol (15-azasterol) in Geotrichum flavo-brunneum strain NRRL28804 have been studied. During the growth cycle of this organism, morphological changes were noted which corresponded to changes in the pH of the culture medium. A physiological shift from acid to base production also occurred during the growth cycle. Concomitant with this physiological shift was the synthesis of 15-azasterol. Upon synthesis of this azasterol, variations in the sterol pool were observed. These variations are identical to sterol alterations in susceptible yeast cells exposed to this drug (P. R. Hays, W. D. Neal, and L. W. Parks, Antimicrob. Agents Chemother. 12: 185-191, 1977.) It appears that NRRL28804 avoids growth inhibition from 15-azasterol by confining its production to late in the growth cycle.

Full text

PDF
822

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bailey R. B., Hays P. R., Parks L. W. Homoazasterol-mediated inhibition of yeast sterol biosynthesis. J Bacteriol. 1976 Dec;128(3):730–734. doi: 10.1128/jb.128.3.730-734.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boeck L. D., Hoehn M. M., Westhead J. E., Wolter R. K., Thomas D. N. New azasteroidal antifungal antibotics from Geotrichum flavo-brunneum. I. Discovery and fermentation studies. J Antibiot (Tokyo) 1975 Feb;28(2):95–101. doi: 10.7164/antibiotics.28.95. [DOI] [PubMed] [Google Scholar]
  3. Bottema C. K., Parks L. W. Delta14-sterol reductase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1978 Dec 22;531(3):301–307. doi: 10.1016/0005-2760(78)90212-6. [DOI] [PubMed] [Google Scholar]
  4. Gordee R. S., Butler T. F. New azasteroidal antifungal antibiotics from Geotrichum flavo-brunneum. III. Biological activity. J Antibiot (Tokyo) 1975 Feb;28(2):112–117. doi: 10.7164/antibiotics.28.112. [DOI] [PubMed] [Google Scholar]
  5. Hays P. R., Neal W. D., Parks L. W. Physiological effects of an antimycotic azasterol on cultures of Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1977 Aug;12(2):185–191. doi: 10.1128/aac.12.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hays P. R., Parks L. W., Pierce H. D., Jr, Oehlschlager A. C. Accumulation of ergosta-8,14-dien-3beta-ol by Saccharomyces cerevisiae cultured with an azasterol antimycotic agent. Lipids. 1977 Aug;12(8):666–668. doi: 10.1007/BF02533762. [DOI] [PubMed] [Google Scholar]
  7. Neal W. D., Parks L. W. Sterol 24(28) methylene reductase in Saccharomyces cerevisiae. J Bacteriol. 1977 Mar;129(3):1375–1378. doi: 10.1128/jb.129.3.1375-1378.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Skipski V. P., Smolowe A. F., Sullivan R. C., Barclay M. Separation of lipid classes by thin-layer chromatography. Biochim Biophys Acta. 1965 Oct 4;106(2):386–396. doi: 10.1016/0005-2760(65)90047-0. [DOI] [PubMed] [Google Scholar]
  9. Taylor F. R., Parks L. W. Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J Bacteriol. 1978 Nov;136(2):531–537. doi: 10.1128/jb.136.2.531-537.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES